Carsten Culmsee

Learn More
Elevated plasma levels of the sulfur-containing amino acid homocysteine increase the risk for atherosclerosis, stroke, and possibly Alzheimer's disease, but the underlying mechanisms are unknown. We now report that homocysteine induces apoptosis in rat hippocampal neurons. DNA strand breaks and associated activation of poly-ADP-ribose polymerase (PARP) and(More)
The chemoattractant stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) are key modulators of immune function. In the developing brain, SDF-1 is crucial for neuronal guidance; however, cerebral functions of SDF-1/CXCR4 in adulthood are unclear. Here, we examine the cellular expression of SDF-1 isoforms and CXCR4 in the(More)
The transcription factor nuclear factor kappaB (NF-kappaB) is moving to the forefront of the fields of apoptosis and neuronal plasticity because of recent findings showing that activation of NF-kappaB prevents neuronal apoptosis in various cell culture and in vivo models and because NF-kappaB is activated in association with synaptic plasticity. Activation(More)
Oxidative stress in conjunction with glutathione depletion has been linked with various acute and chronic degenerative disorders, yet the molecular mechanisms have remained unclear. In contrast to the belief that oxygen radicals are detrimental to cells and tissues by unspecific oxidation of essential biomolecules, we now demonstrate that oxidative stress(More)
Adenosine monophosphate-activated protein kinase (AMPK) is a member of metabolite-sensing kinase family that plays important roles in responses of muscle cells to metabolic stress. AMPK is a heterotrimer of a catalytic α subunit (α1 or α2), and β (β1 or β2) and γ (γ1 or γ2) subunits. Because the brain has a high metabolic rate and is sensitive to changes in(More)
The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 can trigger apoptosis in many cell types including neurons. Apoptosis is a form of programmed cell death that occurs in neurons during development of the nervous system and may also be responsible for neuronal deaths that occur in(More)
The tumor suppressor protein p53 is essential for neuronal death in several experimental settings and may participate in human neurodegenerative disorders. Based upon recent studies characterizing chemical inhibitors of p53 in preclinical studies in the cancer therapy field, we synthesized the compound pifithrin-alpha and evaluated its potential(More)
Despite the characterization of neuroprotection by transforming growth factor-beta1 (TGF-beta1), the signaling pathway mediating its protective effect is unclear. Bad is a proapoptotic member of the Bcl-2 family and is inactivated on phosphorylation via mitogen-activated protein kinase (MAPK). This study attempted to address whether MAPK signaling and Bad(More)
A short ischemic period induced by the transient occlusion of major brain arteries induces neuronal damage in selectively vulnerable regions of the hippocampus. Adenosine is considered to be one of the major neuroprotective substances produced in the ischemic brain. It can be released from damaged cells, but it also could be generated extracellularly from(More)
Mitochondrial dysfunction and release of pro-apoptotic factors such as cytochrome c or apoptosis-inducing factor (AIF) from mitochondria are key features of neuronal cell death. The precise mechanisms of how these proteins are released from mitochondria and their particular role in neuronal cell death signaling are however largely unknown. Here, we(More)