Carolyn W. Harley

Learn More
Norepinephrine (NE) and serotonin (5-HT) are important modulators of early odor preference learning. NE can act as an unconditioned stimulus (UCS), whereas 5-HT facilitates noradrenergic actions. In this study, we examined the phosphorylation of an important transcription factor, cAMP response element binding protein (CREB), which has been implicated in(More)
Early olfactory preference learning in rat pups occurs when novel odors are paired with tactile stimulation, for example stroking. cAMP-triggered phosphorylation of cAMP response element binding protein (pCREB) has been implicated as a mediator of learning and memory changes in various animals (Frank and Greenberg 1994). In the present study we investigate(More)
Rats were trained to locate food in a response, direction, or place problem on an open field located at 2 positions. In Experiment 1, both the response and direction groups solved the problem. The place group failed to solve the task in approximately 300 trials. Experiment 2 demonstrated that rats need distinguishable start points to solve a place problem(More)
Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority(More)
Glutamate activation of the locus coeruleus (LC) and norepinephrine (NE) have both been shown to potentiate the perforant path (PP)-evoked population spike. This potentiation may be short-lasting, the population spike returning to baseline levels within minutes after NE-application or LC activation, or can be long-lasting, persisting 20 minutes or more(More)
It was hypothesized that 5-HT2 receptors in the olfactory bulb prime the bulbar response to a beta adrenoceptor mediated unconditioned stimulus (UCS) during odor preference learning in 1-week-old rat pups. The ability of 4 mg/kg of isoproterenol + stroking and 6 mg/kg of isoproterenol + no stroking to induce normal odor preference learning in pups depleted(More)
The effects of superfusion of norepinephrine (NE) on perforant path (PP) evoked potentials in the dentate gyrus were evaluated in the rat hippocampal slice preparation. Superfusion of NE (10 microM) produced a facilitation of the PP evoked responses. Facilitation of the synaptically-evoked responses was expressed in the field potential as an increase in(More)
Norepinephrine (NE)-induced, long-lasting facilitation of the perforant path evoked population spike amplitude in the dentate gyrus (DG) has been reported to occur following iontophoresis of norepinephrine in the DG in vivo and following application of 10 or 20 μM NE to the hippocampal slice in vitro. The present study employs glutamatergic activation of(More)
Norepinephrine's role in the dentate gyrus is assessed based on a review of what is known about its innervation and receptor patterns and its functional effects at both cellular and behavioral levels. The data support seven hypotheses: (1) Norepinephrine's functional actions are primarily mediated by beta adrenoceptors and include electrophysiological(More)
In the present study we assess a new model for classical conditioning of odor preference learning in rat pups. In preference learning beta(1)-adrenoceptors activated by the locus coeruleus mediate the unconditioned stimulus, whereas olfactory nerve input mediates the conditioned stimulus, odor. Serotonin (5-HT) depletion prevents odor learning, with(More)