Learn More
Speech comprehension is resistant to acoustic distortion in the input, reflecting listeners' ability to adjust perceptual processes to match the speech input. For noise-vocoded sentences, a manipulation that removes spectral detail from speech, listeners' reporting improved from near 0% to 70% correct over 30 sentences (Experiment 1). Learning was enhanced(More)
The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in the motor cortex during speech perception, and the motor cortex(More)
Phonagnosia, the inability to recognize familiar voices, has been studied in brain-damaged patients but no cases due to developmental problems have been reported. Here we describe the case of KH, a 60-year-old active professional woman who reports that she has always experienced severe voice recognition difficulties. Her hearing abilities are normal, and an(More)
This study investigated the neural plasticity associated with perceptual learning of a cochlear implant (CI) simulation. Normal-hearing listeners were trained with vocoded and spectrally shifted speech simulating a CI while cortical responses were measured with functional magnetic resonance imaging (fMRI). A condition in which the vocoded speech was(More)
Speech comprehension is a complex human skill, the performance of which requires the perceiver to combine information from several sources - e.g. voice, face, gesture, linguistic context - to achieve an intelligible and interpretable percept. We describe a functional imaging investigation of how auditory, visual and linguistic information interact to(More)
This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural responses to(More)
Humans express laughter differently depending on the context: polite titters of agreement are very different from explosions of mirth. Using functional MRI, we explored the neural responses during passive listening to authentic amusement laughter and controlled, voluntary laughter. We found greater activity in anterior medial prefrontal cortex (amPFC) to(More)
The question of hemispheric lateralization of neural processes is one that is pertinent to a range of subdisciplines of cognitive neuroscience. Language is often assumed to be left-lateralized in the human brain, but there has been a long running debate about the underlying reasons for this. We addressed this problem with fMRI by identifying the neural(More)
Over the past 30 years hemispheric asymmetries in speech perception have been construed within a domain-general framework, according to which preferential processing of speech is due to left-lateralized, non-linguistic acoustic sensitivities. A prominent version of this argument holds that the left temporal lobe selectively processes rapid/temporal(More)
Laughter is often considered to be the product of humour. However, laughter is a social emotion, occurring most often in interactions, where it is associated with bonding, agreement, affection, and emotional regulation. Laughter is underpinned by complex neural systems, allowing it to be used flexibly. In humans and chimpanzees, social (voluntary) laughter(More)