Carolyn L. Smith

Learn More
The mechanism by which Golgi membrane proteins are retained within the Golgi complex in the midst of a continuous flow of protein and lipid is not yet understood. The diffusional mobilities of mammalian Golgi membrane proteins fused with green fluorescent protein from Aequorea victoria were measured in living HeLa cells with the fluorescence photobleaching(More)
Bax, a member of the Bcl-2 protein family, accelerates apoptosis by an unknown mechanism. Bax has been recently reported to be an integral membrane protein associated with organelles or bound to organelles by Bcl-2 or a soluble protein found in the cytosol. To explore Bcl-2 family member localization in living cells, the green fluorescent protein (GFP) was(More)
Quantitative imaging and photobleaching were used to measure ER/Golgi recycling of GFP-tagged Golgi proteins in interphase cells and to monitor the dissolution and reformation of the Golgi during mitosis. In interphase, recycling occurred every 1.5 hr, and blocking ER egress trapped cycling Golgi enzymes in the ER with loss of Golgi structure. In mitosis,(More)
During apoptosis, the mitochondrial network fragments. Using short hairpin RNAs for RNA interference, we manipulated the expression levels of the proteins hFis1, Drp1, and Opa1 that are involved in mitochondrial fission and fusion in mammalian cells, and we characterized their functions in mitochondrial morphology and apoptosis. Down-regulation of hFis1(More)
The Golgi complex is a dynamic organelle engaged in both secretory and retrograde membrane traffic. Here, we use green fluorescent protein-Golgi protein chimeras to study Golgi morphology in vivo. In untreated cells, membrane tubules were a ubiquitous, prominent feature of the Golgi complex, serving both to interconnect adjacent Golgi elements and to carry(More)
Lysosomes are the stomachs of the cell-terminal organelles on the endocytic pathway where internalized macromolecules are degraded. Containing a wide range of hydrolytic enzymes, lysosomes depend on maintaining acidic luminal pH values for efficient function. Although acidification is mediated by a V-type proton ATPase, a parallel anion pathway is essential(More)
A dynamic balance of organelle fusion and fission regulates mitochondrial morphology. During apoptosis this balance is altered, leading to an extensive fragmentation of the mitochondria. Here, we describe a novel assay of mitochondrial dynamics based on confocal imaging of cells expressing a mitochondrial matrix-targeted photoactivable green fluorescent(More)
Steroid receptors are ligand-regulated transcription factors that require coactivators for efficient activation of target gene expression. The binding protein of cAMP response element binding protein (CBP) appears to be a promiscuous coactivator for an increasing number of transcription factors and the ability of CBP to modulate estrogen receptor (ER)- and(More)
Estrogen receptor-alpha (ER alpha) is downregulated in the presence of its cognate ligand, estradiol (E2), through the ubiquitin proteasome pathway. Here, we show that ubiquitin proteasome function is required for ER alpha to serve as a transcriptional activator. Deletion of the last 61 amino acids of ER alpha, including residues that form helix 12,(More)
Here we report the use of fluorescence recovery after photobleaching (FRAP) to examine the intranuclear dynamics of fluorescent oestrogen receptor-alpha (ER). After bleaching, unliganded ER exhibits high mobility (recovery t1/2 < 1 s). Agonist (oestradiol; E2) or partial antagonist (4-hydroxytamoxifen) slows ER recovery (t1/2 approximately 5-6 s), whereas(More)