Carolyn J Schultz

Learn More
Arabinogalactan proteins (AGPs) are extracellular hydroxyproline-rich proteoglycans implicated in plant growth and development. The protein backbones of AGPs are rich in proline/hydroxyproline, serine, alanine, and threonine. Most family members have less than 40% similarity; therefore, finding family members using Basic Local Alignment Search Tool searches(More)
Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs) that have, in addition to predicted AGP-like glycosylated regions, putative cell adhesion domains known as fasciclin domains. In other eukaryotes (e.g. fruitfly [Drosophila melanogaster] and humans [Homo sapiens]), fasciclin domain-containing proteins are(More)
Posttranslational glycosylphosphatidylinositol (GPI) lipid anchoring is common not only for animal and fungal but also for plant proteins. The attachment of the GPI moiety to the carboxyl-terminus after proteolytic cleavage of a C-terminal propeptide is performed by the transamidase complex. Its four known subunits also have obvious full-length orthologs in(More)
Arabinogalactan-proteins (AGPs) are a family of complex proteoglycans found in all higher plants. Although the precise function(s) of any single AGP is unknown, they are implicated in diverse developmental roles such as differentiation, cell-cell recognition, embryogenesis and programmed cell death. DNA sequencing projects have made possible the(More)
Plant Cell Biology Research Centre, School of Botany (M.E., A.B.), and Australian Centre for Plant Functional Genomics (A.B.), University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, DK–1871 Frederiksberg C, Denmark (J.E.); and School of Agriculture,(More)
Arabinogalactan-proteins (AGPs) are a family of complex proteoglycans widely distributed in plants. The Arabidopsis rat1 mutant, previously characterized as resistant to Agrobacterium tumefaciens root transformation, is due to a mutation in the gene for the Lys-rich AGP, AtAGP17. We show that the phenotype of rat1 correlates with down-regulation of AGP17 in(More)
Studies of enzymes involved in nitrogen assimilation in higher plants have an impact on both basic and applied plant research. First, basic research in this area should uncover the mechanisms by which plants regulate genes involved in a metabolic pathway. Second, because nitrogen is a rate-limiting element in plant growth (Hageman and Lambert, 1988), it may(More)
We have developed a method for separating the deglycosylated protein/peptide backbones of the small arabinogalactan (AG)-peptides from the larger classical arabinogalactan-proteins (AGPs). AGPs are an important class of plant proteoglycans implicated in plant growth and development. Separation of AG-peptides enabled us to identify eight of 12 AG-peptides(More)
Here, a complete study is described of all the genes and isoenzymes for aspartate aminotransferase (AspAT) present in Arabidopsis thaliana. Four classes of cDNAs representing four distinct AspAT genes (ASP1-ASP4) have been cloned from Arabidopsis. Sequence analysis of the cDNAs suggests that the encoded proteins are targeted to different subcellular(More)
To begin biochemical and molecular studies on the biosynthesis of the type II arabinogalactan chains on arabinogalactan-proteins (AGPs), we adopted a bioinformatic approach to identify and systematically characterise the putative galactosyltransferases (GalTs) responsible for synthesizing the β-(1,3)-Gal linkage from CAZy GT-family-31 from Arabidopsis(More)