Learn More
Heavy rainfall events causing significant terrestrial runoff into coastal marine ecosystems are predicted to become more frequent with climate change in the Mediterranean. To simulate the effects of soil runoff on the pelagic food web of an oligotrophic Mediterranean coastal lagoon, we crossed soil extract addition (increasing nutrient availability and(More)
Terrestrial runoff into aquatic ecosystems may have both stimulatory and inhibitory effects, due to nutrient subsidies and increased light attenuation. To disentangle the effects of runoff on microbenthos, we added soil to coastal mesocosms and manipulated substrate depth. To test if fish interacted with runoff effects, we manipulated fish presence. Soil(More)
The aim of this study was to predict the combined effects of enhanced nitrogen (N) deposition and warming on phytoplankton development in high latitude and mountain lakes. Consequently, we assessed, in a series of enclosure experiments, how lake water nutrient stoichiometry and phytoplankton nutrient limitation varied over the growing season in 11 lakes(More)
Climate change scenarios predict intensified terrestrial storm runoff, providing coastal ecosystems with large nutrient pulses and increased turbidity, with unknown consequences for the phytoplankton community. We conducted a 12-day mesocosm experiment in the Mediterranean Thau Lagoon (France), adding soil (simulated runoff) and fish (different food webs)(More)
This study demonstrates that clear and humic freshwater pelagic communities respond differently to the same environmental stressors, i.e. nutrient and light availability. Thus, effects on humic communities cannot be generalized from existing knowledge about these environmental stressors on clear water communities. Small humic lakes are the most numerous(More)
Global change has increased inorganic nitrogen (N) and dissolved organic carbon (DOC; i.e., "browning") inputs to northern hemisphere boreal lakes. However, we do not know how phytoplankton in nutrient poor lake ecosystems of different DOC concentration respond to increased N availability. Here, we monitored changes in phytoplankton production, biomass and(More)
  • 1