Caroline S. Moffat

Learn More
• Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold- and drought-inducible gene expression and freezing- and osmotic-stress tolerance. Its identification as a component of the MEDIATOR transcriptional co-activator complex led us to address its involvement in other transcriptional responses. • Gene expression responses to Pseudomonas syringae,(More)
The ethylene response factor (ERF) family in Arabidopsis thaliana comprises 122 members in 12 groups, yet the biological functions of the majority remain unknown. Of the group IX ERFs, the IXc subgroup has been studied the most, and includes ERF1, ERF14 and ORA59, which play roles in plant innate immunity. Here we investigate the biological functions of two(More)
Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the cause of one of barley's most important diseases, net form of net blotch. Here we report the first genome assembly for this species based solely on short Solexa sequencing reads of isolate 0-1. The assembly was validated by comparison to BAC sequences, ESTs, orthologous genes and by PCR,(More)
In the course of several different projects, we came to realize that there is a significant amount of untapped potential in the publicly available T-DNA insertion lines. In addition to the GABI-Kat lines, which were designed specifically for activation tagging, lines from the SAIL and FLAGdb collections are also useful for this purpose. As well as the 35S(More)
Three of the most important fungal pathogens of cereals are Pyrenophora tritici-repentis, the cause of tan spot on wheat, and Pyrenophora teres f. teres and Pyrenophora teres f. maculata, the cause of spot form and net form of net blotch on barley, respectively. Orthologous intergenic regions were used to examine the genetic relationships and divergence(More)
The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch of wheat (Triticum aestivum). The interaction is mediated by multiple fungal necrotrophic effector-dominant host sensitivity gene interactions. The three best-characterized effector-sensitivity gene systems are SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. These effector genes(More)
The necrotrophic fungal pathogen Pyrenophora tritici-repentis causes tan spot, a major disease of wheat, throughout the world. The proteinaceous effector ToxA is responsible for foliar necrosis on ToxA-sensitive wheat genotypes. The single copy ToxA gene was deleted from a wild-type race 1 P. tritici-repentis isolate via homologous recombination of a(More)
The wheat variety Mace is currently dominating the southern wheat growing regions of Australia. It is high yielding in most environments and resistant to many diseases including yellow spot (also known as tan spot). However, observations of foliar yellowing of Mace have recently been reported in the field. This has raised concerns over a possible breakdown(More)
Studies of plant-pathogen interactions have historically focused on simple models of infection involving single host-single disease systems. However, plant infections often involve multiple species and/or genotypes and exhibit complexities not captured in single host-single disease systems. Here, we review recent insights into co-infection systems focusing(More)
  • 1