Caroline Morgane Choisy-Rossi

Learn More
The tumor suppressor gene p53 is a major player in the protection of cells from DNA damage. In the majority of human cancers, p53 is functionally inactivated--mostly by mutations but also by interaction with viral or cellular proteins. Wild-type p53 is involved in essential functions such as DNA repair, transcription, genomic stability, senescence, cell(More)
The mechanisms by which the p53 tumour suppressor protein would, in vivo, co-ordinate the adaptive response to genotoxic stress is poorly understood. p53 has been shown to transactivate several genes that could be involved in two main cellular responses, growth arrest and apoptosis. To get further insight into the tissue-specific regulation of p53(More)
Development of autoreactive CD4 T cells contributing to type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is either promoted or dominantly inhibited by particular MHC class II variants. In addition, it is now clear that when co-expressed with other susceptibility genes, some common MHC class I variants aberrantly mediate autoreactive CD8(More)
Interleukin (IL)-1 beta and IL-18 are two cytokines associated with the immunopathogenesis of diabetes in NOD mice. Both of these cytokines are cleaved by caspase-1 to their biologically active forms. IL-1 is a proinflammatory cytokine linked to beta-cell damage, and IL-18 stimulates production of interferon (IFN)gamma in synergy with IL-12. To examine the(More)
When expressed in NOD, but not C57BL/6 (B6) genetic background mice, the common class I variants encoded by the H2g7 MHC haplotype aberrantly lose the ability to mediate the thymic deletion of autoreactive CD8+ T cells contributing to type 1 diabetes (T1D). This indicated some subset of the T1D susceptibility (Idd) genes located outside the MHC of NOD mice(More)
  • 1