Caroline M. Lambert

Learn More
Microglia and hematogenous myeloid cells are prominent components of inflammatory central nervous system (CNS) lesions associated with tissue injury. To help define the basis for recruitment of such cells into lesions and their contribution to the disease process, we characterized the migratory and cytokine responses of human adult and fetal microglia in(More)
Like cancer, pulmonary arterial hypertension (PAH) is characterised by a pro-proliferative and anti-apoptotic phenotype. In PAH, pulmonary artery smooth muscle cell (PASMC) proliferation is enhanced and apoptosis suppressed. The sustainability of this phenotype requires the activation of pro-survival transcription factors, such as signal transducer and(More)
Microglia are resident cells of the CNS that belong to the myeloid cell lineage. In experimental models of neuroinflammation, they have limited capacity to function as APCs when compared with dendritic cells (DCs). Human peripheral blood monocytes have the plasticity to differentiate into mature DCs when exposed to GM-CSF and IL-4 followed by LPS. In this(More)
BACKGROUND Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cell (PASMC) and suppressed apoptosis. This phenotype has been associated with the upregulation of the oncoprotein survivin promoting mitochondrial membrane potential hyperpolarization (decreasing(More)
AIMS Vascular remodelling diseases are characterized by the presence of proliferative and apoptosis-resistant vascular smooth muscle cells (VSMC). There is evidence that pro-proliferative and anti-apoptotic states are characterized by metabolic remodelling (a glycolytic phenotype with hyperpolarized mitochondria) involving Akt pathway activation by(More)
Pulmonary artery smooth muscle cells (PASMC), in pulmonary arterial hypertension (PAH), contribute to obliterative vascular remodelling and are characterised by enhanced proliferation, suppressed apoptosis and, a much less studied, increased migration potential. One of the major proteins that regulate cell migration is focal adhesion kinase (FAK), but its(More)
OBJECTIVE Vascular remodeling diseases (VRD) are mainly characterized by inflammation and a vascular smooth muscle cells (VSMCs) proproliferative and anti-apoptotic phenotype. Recently, the activation of the advanced glycation endproducts receptor (RAGE) has been shown to promote VSMC proliferation and resistance to apoptosis in VRD in a signal transducer(More)
Human microglia, monocyte-derived dendritic cells (DCs) and macrophages ex vivo express relatively higher levels of sphingosine-1-phosphate (S1P) receptor 1 (S1P1) mRNA as compared to other receptor subtypes. The S1P agonist FTY720 decreased ERK phosphorylation and induced myosin light chain (MLC) II phosphorylation only in macrophages and DCs. FTY720(More)
Fas (CD95, APO-1), a member of the TNF superfamily, is a prototypical “death receptor” which transduces apoptotic signals in a variety of cell types. However, cell death is not the only possible outcome of Fas signalling. Fas engagement by Fas Ligand can also trigger proliferation or differentiation, promote tumour progression and angiogenesis, and induce(More)
RATIONALE Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes,(More)