Learn More
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating(More)
Molecular markers revealed that Botryotinia fuckeliana (the teleomorph of Botrytis cinerea), a haploid, filamentous, heterothallic ascomycete, contained a large amount of intrapopulation genetic variation. The markers were used to determine the mode of reproduction and the population structure of this fungus. We did not detect any differentiation between(More)
Lignin is incorporated into plant cell walls to maintain plant architecture and to ensure long-distance water transport. Lignin composition affects the industrial value of plant material for forage, wood and paper production, and biofuel technologies. Industrial demands have resulted in an increase in the use of genetic engineering to modify lignified plant(More)
A minisatellite was identified in the intron of the ATP synthase of the filamentous fungus Botrytis cinerea, and it was named MSB1. This is the second fungal minisatellite described to date. Its 37-bp repeat unit is AT-rich, and it is found at only one locus in the genome. The introns of 47 isolates of Botrytis species were sequenced. The number of tandem(More)
The Botrytis cinerea homolog (Bc-hch) of Nc-het-c and Pa-hch (vegetative incompatibility loci of Neurospora crassa and Podospora anserina respectively) was cloned and sequenced. The gene structure of Bc-hch is very close to those of Nc-het-c and Pa-hch. A PCR-RFLP approach on a 1171 bp fragment was used to screen polymorphism at this locus among 117 natural(More)
  • 1