Learn More
Molecular markers revealed that Botryotinia fuckeliana (the teleomorph of Botrytis cinerea), a haploid, filamentous, heterothallic ascomycete, contained a large amount of intrapopulation genetic variation. The markers were used to determine the mode of reproduction and the population structure of this fungus. We did not detect any differentiation between(More)
Botrytis cinerea is responsible for the gray mold disease on more than 200 host plants. This necrotrophic ascomycete displays the capacity to kill host cells through the production of toxins, reactive oxygen species and the induction of a plant-produced oxidative burst. Thanks to an arsenal of degrading enzymes, B. cinerea is then able to feed on different(More)
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating(More)
The pectinolytic enzyme pectin methylesterase (PME) hydrolyses pectin in methanol and polygalacturonic acid. In the expressed sequence tag library of Botrytis cinerea T4, we identified a 1,041 bp Bcpme1 cDNA potentially encoding a 346-amino acid protein of 37 kDa showing 46.8% identity with Aspergillus sp. PMEs. Bcpme1 is a single copy gene and is similarly(More)
A purified glycoprotein from Botrytis cinerea (strain T4), identified as endopolygalacturonase 1 (T4BcPG1) by mass spectrometry analysis, has been shown to activate defense reactions in grapevine (Vitis vinifera cv. Gamay). These reactions include calcium influx, production of active oxygen species, activation of two mitogen-activated protein kinases,(More)
Calcineurin phosphatase and cyclophilin A are cellular components involved in fungal morphogenesis and virulence. Their roles were investigated in the phytopathogenic fungus Botrytis cinerea using gene inactivation, drug inhibition and cDNA macroarrays approaches. First, the BCP1 gene coding for cyclophilin A was identified and inactivated by homologous(More)
A minisatellite was identified in the intron of the ATP synthase of the filamentous fungus Botrytis cinerea, and it was named MSB1. This is the second fungal minisatellite described to date. Its 37-bp repeat unit is AT-rich, and it is found at only one locus in the genome. The introns of 47 isolates of Botrytis species were sequenced. The number of tandem(More)
ABSTRACT Strains of Botrytis cinerea (the anamorph of Botryotinia fuckeliana) were collected from 21 different plant species around vineyards in the Champagne region (France). Strains were analyzed using three new polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) markers that were found by SWAPP (sequencing with arbitrary(More)
Lignin is incorporated into plant cell walls to maintain plant architecture and to ensure long-distance water transport. Lignin composition affects the industrial value of plant material for forage, wood and paper production, and biofuel technologies. Industrial demands have resulted in an increase in the use of genetic engineering to modify lignified plant(More)
A transposable element, Flipper, was isolated from the phytopathogenic fungus Botrytis cinerea. The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. The Flipper sequence is 1842 bp long with perfect inverted terminal repeats (ITRs) of 48 bp and an open reading frame (ORF) of 533 amino acids, potentially(More)