#### Filter Results:

- Full text PDF available (25)

#### Publication Year

2003

2016

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Federico Ardila, Caroline J. Klivans
- J. Comb. Theory, Ser. B
- 2006

We study the Bergman complex B(M) of a matroid M : a poly-hedral complex which arises in algebraic geometry, but which we describe purely combinatorially. We prove that a natural subdivision of the Bergman complex of M is a geometric realization of the order complex of its lattice of flats. In addition, we show that the Bergman fan B(K n) of the graphical… (More)

We generalize the definition and enumeration of spanning trees from the setting of graphs to that of arbitrary-dimensional simplicial complexes ∆, extending an idea due to G. Kalai. We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees, weighted by the squares of the orders of their top-dimensional integral homology… (More)

We study the class of matroids whose independent set complexes are shifted simplicial complexes. We prove two characterization theorems, one of which is constructive. In addition, we show this class is closed under taking minors and duality. Finally, we give results on shifted broken circuit complexes.

- Johnny Guzmán, Caroline J. Klivans
- J. Comb. Theory, Ser. A
- 2015

We consider chip-firing dynamics defined by arbitrary M-matrices. M-matrices generalize graph Laplacians and were shown by Gabrielov to yield avalanche finite systems. Building on the work of Baker and Shokrieh, we extend the concept of energy minimizing chip configurations. Given an M-matrix, we show that there exists a unique energy minimizing… (More)

We consider projections of points onto fundamental chambers of finite real reflection groups. Our main result shows that for groups of type An, Bn, and Dn, the coefficients of the characteristic polynomial of the reflection arrangement are proportional to the spherical volumes of the sets of points that are projected onto faces of a given dimension. We also… (More)

- Caroline J. Klivans, Victor Reiner
- Electr. J. Comb.
- 2008

We study, in three parts, degree sequences of k-families (or k-uniform hypergraphs) and shifted k-families. • The first part collects for the first time in one place, various implications such as Threshold ⇒ Uniquely Realizable ⇒ Degree-Maximal ⇒ Shifted which are equivalent concepts for 2-families (= simple graphs), but strict implications for k-families… (More)

- Caroline J. Klivans
- Discrete Mathematics
- 2007

We consider a variety of connections between threshold graphs, shifted complexes, and simplicial complexes naturally formed from a graph. These graphical complexes include the independent set, neighborhood, and dominance complexes. We present a number of structural results and relations among them including new characterizations of the class of threshold… (More)

- Ronen Basri, Pedro F. Felzenszwalb, Ross B. Girshick, David W. Jacobs, Caroline J. Klivans
- 2009 IEEE Conference on Computer Vision and…
- 2009

To recognize three-dimensional objects it is important to model how their appearances can change due to changes in viewpoint. A key aspect of this involves understanding which object features can be simultaneously visible under different viewpoints. We address this problem in an image-based framework, in which we use a limited number of images of an object… (More)

We generalize the theory of critical groups from graphs to sim-plicial complexes. Specifically, given a simplicial complex, we define a family of abelian groups in terms of combinatorial Laplacian operators, generalizing the construction of the critical group of a graph. We show how to realize these critical groups explicitly as cokernels of reduced… (More)

- Caroline J. Klivans
- Discrete & Computational Geometry
- 2005

In this paper we show results on the combinatorial properties of shifted sim-plicial complexes. We prove two intrinsic characterization theorems for this class. The first theorem is in terms of a generalized vicinal preorder. It is shown that a complex is shifted if and only if the preorder is total. Building on this we characterize obstructions to… (More)