#### Filter Results:

#### Publication Year

2005

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We study the Bergman complex B(M) of a matroid M : a poly-hedral complex which arises in algebraic geometry, but which we describe purely combinatorially. We prove that a natural subdivision of the Bergman complex of M is a geometric realization of the order complex of its lattice of flats. In addition, we show that the Bergman fan B(K n) of the graphical… (More)

We consider chip-firing dynamics defined by arbitrary M-matrices. M-matrices generalize graph Laplacians and were shown by Gabrielov to yield avalanche finite systems. Building on the work of Baker and Shokrieh, we extend the concept of energy minimizing chip configurations. Given an M-matrix, we show that there exists a unique energy minimizing… (More)

We study, in three parts, degree sequences of k-families (or k-uniform hypergraphs) and shifted k-families. • The first part collects for the first time in one place, various implications such as Threshold ⇒ Uniquely Realizable ⇒ Degree-Maximal ⇒ Shifted which are equivalent concepts for 2-families (= simple graphs), but strict implications for k-families… (More)

We consider a variety of connections between threshold graphs, shifted complexes, and simplicial complexes naturally formed from a graph. These graphical complexes include the independent set, neighborhood, and dominance complexes. We present a number of structural results and relations among them including new characterizations of the class of threshold… (More)

To recognize three-dimensional objects it is important to model how their appearances can change due to changes in viewpoint. A key aspect of this involves understanding which object features can be simultaneously visible under different viewpoints. We address this problem in an image-based framework, in which we use a limited number of images of an object… (More)

In this paper we show results on the combinatorial properties of shifted sim-plicial complexes. We prove two intrinsic characterization theorems for this class. The first theorem is in terms of a generalized vicinal preorder. It is shown that a complex is shifted if and only if the preorder is total. Building on this we characterize obstructions to… (More)

We prove that for any finite real hyperplane arrangement the average projection volumes of the maximal cones are given by the coefficients of the characteristic polynomial of the arrangement. This settles the conjecture of Drton and Klivans that this held for all finite real reflection arrangements. The methods used are geometric and combinatorial. As a… (More)

We study the positive Bergman complex B + (M) of an oriented matroid M , which is a certain subcomplex of the Bergman complex B(M) of the underlying unoriented matroid M. The positive Bergman complex is defined so that given a linear ideal I with associated oriented matroid MI , the positive tropical variety associated to I is equal to the fan over B +… (More)

We study degree sequences for simplicial posets and polyhedral complexes, generalizing the well-studied graphical degree sequences. Here we extend the more common generalization of vertex-to-facet degree sequences by considering arbitrary face-to-flag degree sequences. In particular, these may be viewed as natural refinements of the flag f-vector of the… (More)

We propose a generalization of the graphical chip-firing model allowing for the redistribution dynamics to be governed by any invertible integer matrix while maintaining the long term critical, superstable, and energy minimizing behavior of the classical model.