Caroline B. Madsen

Learn More
Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing, and presentation on MHC class I and II molecules. The effect of(More)
Protein glycosylation often changes during cancer development, resulting in the expression of cancer-associated carbohydrate antigens. In particular mucins such as MUC1 are subject to these changes. We previously identified an immunodominant Tn-MUC1 (GalNAc-α-MUC1) cancer-specific epitope not covered by immunological tolerance in MUC1 humanized mice and(More)
Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical steps in glycan elongation that make aberrantly glycosylated(More)
Aberrant glycosylation is a key feature of car-cinogenesis. The dense surface distribution of unique glycan structures on malignant cells makes carbohydrates attractive targets for the development of anti-cancer vaccines. In particular, mucin-type O-glycan synthesis is a complex, regulated process involving more than 50 gene products. A consistent feature(More)
  • 1