Carolina Galleguillos

Learn More
In the task of visual object categorization, semantic context can play the very important role of reducing ambiguity in objects' visual appearance. In this work we propose to incorporate semantic object context as a post-processing step into any off-the-shelf object categorization model. Using a conditional random field (CRF) framework, our approach(More)
In this work we introduce a novel approach to object categorization that incorporates two types of context-co-occurrence and relative location - with local appearance-based features. Our approach, named CoLA (for co-occurrence, location and appearance), uses a conditional random field (CRF) to maximize object label agreement according to both semantic and(More)
Multiple Instance Learning (MIL) provides a framework for training a discriminative classifier from data with ambiguous labels. This framework is well suited for the task of learning object classifiers from weakly labeled image data, where only the presence of an object in an image is known, but not its location. Some recent work has explored the(More)
Please cite this article in press as: C. Galleguillos doi:10.1016/j.cviu.2010.02.004 The goal of object categorization is to locate and identify instances of an object category within an image. Recognizing an object in an image is difficult when images include occlusion, poor quality, noise or background clutter, and this task becomes even more challenging(More)
The problem of using pictures of objects captured under ideal imaging conditions (here referred to as in vitro) to recognize objects in natural environments (in situ) is an emerging area of interest in computer vision and pattern recognition. Examples of tasks in this vein include assistive vision systems for the blind and object recognition for mobile(More)
Recent work in object localization has shown that the use of contextual cues can greatly improve accuracy over models that use appearance features alone. Although many of these models have successfully explored different types of contextual sources, they only consider one type of contextual interaction (e.g., pixel, region or object level interactions),(More)
The goal of an object category discovery system is to annotate a pool of unlabeled image data, where the set of labels is initially unknown to the system, and must therefore be discovered over time by querying a human annotator. The annotated data is then used to train object detectors in a standard supervised learning setting, possibly in conjunction with(More)
Recently, many object localization models have shown that incorporating contextual cues can greatly improve accuracy over using appearance features alone. Therefore, many of these models have explored different types of contextual sources, but only considering one level of contextual interaction at the time. Thus, what context could truly contribute to(More)
The goal of object category discovery is to automatically identify groups of image regions which belong to some new, previously unseen category. This task is typically performed in a purely unsupervised setting, and as a result, performance depends critically upon accurate assessments of similarity between unlabeled image regions. To improve the accuracy of(More)
Antarctica is one of the less prone environments for plant invasions, nevertheless a growing number of non-native species have been registered in the last decades with negative effects on native flora. Here we assessed adaptive phenotypic plasticity in three photoprotective traits (non-photochemical quenching, total soluble sugars, and de-epoxidation state(More)