Learn More
Two G protein-coupled receptors have been identified that bind corticotropin-releasing factor (CRF) and urocortin (UCN) with high affinity. Hybridization histochemical methods were used to shed light on controversies concerning their localization in rat brain, and to provide normative distributional data in mouse, the standard model for genetic manipulation(More)
Here we describe the cloning and initial characterization of a previously unidentified CRF-related neuropeptide, urocortin II (Ucn II). Searches of the public human genome database identified a region with significant sequence homology to the CRF neuropeptide family. By using homologous primers deduced from the human sequence, a mouse cDNA was isolated from(More)
In addition to a nonadecapeptide homologous to the teleost melanin-concentrating hormone (MCH), the amino acid sequence predicted from a rat prepro-MCH (ppMCH) cDNA suggested that at least one (neuropeptide EI, or NEI), and possibly a second (NGE), additional neuropeptide may be encoded by this precursor. Cross-reactivity with epitopes of NEI or NGE can(More)
Using genome-wide approaches, we have elucidated the regulatory circuitry governed by the XBP1 transcription factor, a key effector of the mammalian unfolded protein response (UPR), in skeletal muscle and secretory cells. We identified a core group of genes involved in constitutive maintenance of ER function in all cell types and tissue- and(More)
Histochemical and axonal transport methods were used to clarify the central organization of cells and fibers that express urocortin (UCN), a recently discovered corticotropin-releasing factor (CRF)-related neuropeptide, which has been proposed as an endogenous ligand for type 2 CRF receptors (CRF-R2). Neurons that display both UCN mRNA and peptide(More)
Neurons comprising the endocrine hypothalamus are disposed in several nuclei that develop in tandem with their ultimate target the pituitary gland, and arise from a primordium in which three related class III POU domain factors, Brn-2, Brn-4, and Brn-1, are initially coexpressed. Subsequently, these factors exhibit stratified patterns of ontogenic(More)
We have provided evidence that the stimulatory effects of intravenous interleukin-1 (IL-1) on neurosecretory neurons in the paraventricular nucleus (PVH) that express corticotropin-releasing factor (CRF) depend specifically on the integrity of catecholaminergic projections originating in caudal medulla. Here we report on experiments designed to test(More)
The activation of neurosecretory neurons that express corticotropin-releasing hormone (CRH) in response to increased circulating levels of interleukin-1beta (IL-1beta) depends on prostaglandin E(2) (PGE(2)) acting locally within the brain parenchyma. To identify potential central targets for PGE(2) relevant to pituitary-adrenal control, the distribution of(More)
Most of the transcriptional effects of cyclic AMP are mediated by the cAMP response element binding protein (CREB). After activation of cAMP-dependent protein kinase A, the catalytic subunits of this enzyme apparently mediate the phosphorylation and activation of CREB. As cAMP serves as a mitogenic signal for anterior pituitary somatotrophic cells, we(More)
Preembedding immunoperoxidase staining methods were used to permit ultrastructural analyses of the distribution in rat brain and pituitary of the corticotropin-releasing factor-binding protein (CRF-BP), a moiety distinct from CRF receptors, but which is nonetheless capable of binding the peptide and reversibly neutralizing its biological actions. In(More)