Learn More
Variable importance measures for random forests have been receiving increased attention as a means of variable selection in many classification tasks in bioinformatics and related scientific fields, for instance to select a subset of genetic markers relevant for the prediction of a certain disease. We show that random forest variable importance measures are(More)
Random forests are becoming increasingly popular in many scientific fields because they can cope with "small n large p" problems, complex interactions and even highly correlated predictor variables. Their variable importance measures have recently been suggested as screening tools for, e.g., gene expression studies. However, these variable importance(More)
Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and bioinformatics(More)
Random forests are one of the most popular statistical learning algorithms, and a variety of methods for fitting random forests and related recursive partitioning approaches is available in R. This paper points out two important features of the random forest implementation cforest available in the party package: The resulting forests are unbiased and thus(More)
BACKGROUND In biometric practice, researchers often apply a large number of different methods in a "trial-and-error" strategy to get as much as possible out of their data and, due to publication pressure or pressure from the consulting customer, present only the most favorable results. This strategy may induce a substantial optimistic bias in prediction(More)
The preference scaling of a group of subjects may not be homogeneous, but different groups of subjects with certain characteristics may show different preference scalings, each of which can be derived from paired comparisons by means of the Bradley-Terry model. Usually, either different models are fit in predefined subsets of the sample, or the effects of(More)
Differential item functioning (DIF) can lead to an unfair advantage or disadvantage for certain subgroups in educational and psychological testing. Therefore, a variety of statistical methods has been suggested for detecting DIF in the Rasch model. Most of these methods are designed for the comparison of pre-specified focal and reference groups, such as(More)
A variety of statistical methods have been suggested for detecting differential item functioning (DIF) in the Rasch model. Most of these methods are designed for the comparison of pre-specified focal and reference groups, such as males and females. Latent class approaches, on the other hand, allow the detection of previously unknown groups exhibiting DIF.(More)