Carole C. Perry

Katherine R Phillips2
Nicolas Vogel2
Quentin S Hanley1
Werner E G Müller1
2Katherine R Phillips
2Nicolas Vogel
1Quentin S Hanley
1Werner E G Müller
Learn More
Using self-assembly, nanoscale materials can be fabricated from the bottom up. Opals and inverse opals are examples of self-assembled nanomaterials made from crystallizing colloidal particles. As self-assembly requires a high level of control, it is challenging to use building blocks with anisotropic geometry to form complex opals, which limits the possible(More)
All metazoan animals comprise a body plan of different complexity. Since--especially based on molecular and cell biological data--it is well established that all metazoan phyla, including the Porifera (sponges), evolved from a common ancestor the search for common, basic principles of pattern formation (body plan) in all phyla began. Common to all metazoan(More)
PDMPO (2-(4-pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl)methoxy)phenyl)oxazole), has unique silica specific fluorescence and is used in biology to understand biosilicification. This 'silicaphilic' fluorescence is not well understood nor is the response to local environmental variables like solvent and pH. We investigated PDMPO in a range of(More)
Silica is the second most abundant biomineral being exceeded in nature only by biogenic CaCO3. Many land plants (such as rice, cereals, cucumber, etc.) deposit silica in significant amounts to reinforce their tissues and as a systematic response to pathogen attack. One of the most ancient species of living vascular plants, Equisetum arvense is also able to(More)
Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on(More)
  • 1