Learn More
Somatic hypermutation introduces point mutations into immunoglobulin genes in germinal centre B cells during an immune response. The reaction is initiated by cytosine deamination by the activation-induced deaminase (AID) and completed by error-prone processing of the resulting uracils by mismatch and base excision repair factors. Somatic hypermutation(More)
Despite the sequencing of the human and mouse genomes, few genetic mechanisms for protecting against autoimmune disease are currently known. Here we systematically screen the mouse genome for autoimmune regulators to isolate a mouse strain, sanroque, with severe autoimmune disease resulting from a single recessive defect in a previously unknown mechanism(More)
Immune responses are normally targeted against microbial pathogens and not self-antigens by mechanisms that are only partly understood. Here we define a newly discovered pathway that prevents autoimmunity by limiting the levels on T lymphocytes of aco-stimulatory receptor, the inducible T-cell co-stimulator(ICOS). In sanroque mice homozygous for an M199R(More)
T-cell help for B cells is essential for high-affinity antibody responses and B-cell memory. Recently, the identity of a discrete follicular population of T cells that has a crucial role in this process has become clearer. Similar to primed CD4(+) T cells in the tonsils and memory CD4(+) T cells in the peripheral blood, this follicular population of T cells(More)
Figure 6. T FR restrict the outgrowth of non-antigen specific clones in the germinal center. Flow cytometric contour plots (a) and graphs (b) of total GL-7 + CD95 + germinal center B cells and (c) NP + germinal center B cells ten days after immunization of Foxp3 WT and Foxp3 DTR mice that have been treated with DT 6 days after NP-KLH immunization.(More)
Production of high-affinity pathogenic autoantibodies appears to be central to the pathogenesis of lupus. Because normal high-affinity antibodies arise from germinal centers (GCs), aberrant selection of GC B cells, caused by either failure of negative selection or enhanced positive selection by follicular helper T (T(FH)) cells, is a plausible explanation(More)
T follicular helper cells (Tfh cells) localize to follicles where they provide growth and selection signals to mutated germinal center (GC) B cells, thus promoting their differentiation into high affinity long-lived plasma cells and memory B cells. T-dependent B cell differentiation also occurs extrafollicularly, giving rise to unmutated plasma cells that(More)
During T cell-dependent responses, B cells can either differentiate extrafollicularly into short-lived plasma cells or enter follicles to form germinal centers (GCs). Interactions with T follicular helper (Tfh) cells are required for GC formation and for selection of somatically mutated GC B cells. Interleukin (IL)-21 has been reported to play a role in Tfh(More)
Exceptionally germinal center formation can be induced without T cell help by polysaccharide-based antigens, but these germinal centers involute by massive B cell apoptosis at the time centrocyte selection starts. This study investigates whether B cells in germinal centers induced by the T cell-independent antigen (4-hydroxy-3-nitrophenyl)acetyl (NP)(More)
The mammalian immune system has an extraordinary potential for making receptors that sense and neutralize any chemical entity entering the body. Inevitably, some of these receptors recognize components of our own body, and so cellular mechanisms have evolved to control the activity of these 'forbidden' receptors and achieve immunological self tolerance.(More)