Learn More
Reactive oxygen species are involved in many cellular metabolic and signalling processes and are thought to have a role in disease, particularly in carcinogenesis and ageing. We have generated mice with targeted inactivation of Prdx1, a member of the peroxiredoxin family of antioxidant enzymes. Here we show that mice lacking Prdx1 are viable and fertile but(More)
It is widely accepted that reactive oxygen species (ROS) promote tumorigenesis. However, the exact mechanisms are still unclear. As mice lacking the peroxidase peroxiredoxin1 (Prdx1) produce more cellular ROS and die prematurely of cancer, they offer an ideal model system to study ROS-induced tumorigenesis. Prdx1 ablation increased the susceptibility to(More)
BACKGROUND The mechanisms by which stress hormones impact triple-negative breast cancer (TNBC) etiology and treatment are unclear. We have previously shown that stress hormones, cortisol, and catecholamines induce rapid DNA damage and impact DNA repair in NIH 3T3 fibroblasts. This study investigates whether stress hormones increase DNA damage in breast(More)
Cellular DNA is organized into chromosomes and capped by a unique nucleoprotein structure, the telomere. Both oxidative stress and telomere shortening/dysfunction cause aging-related degenerative pathologies and increase cancer risk. However, a direct connection between oxidative damage to telomeric DNA, comprising <1% of the genome, and telomere(More)
Many human diseases are attributable to complex interactions among genetic and environmental factors. Statistical tools capable of modeling such complex interactions are necessary to improve identification of genetic factors that increase a patient's risk of disease. Logic Forest (LF), a bagging ensemble algorithm based on logic regression (LR), is able to(More)
  • 1