Carol Y. Ying

Learn More
Cell cycle checkpoints lead to the inhibition of cell cycle progression following DNA damage. A cell-free system derived from Xenopus eggs has been established that reconstitutes the checkpoint pathway inhibiting DNA replication initiation. DNA containing double-strand breaks inhibits replication initiation in a dose-dependent manner. Upon checkpoint(More)
The c-Myc proto-oncogene encodes a transcription factor that is essential for cell growth and proliferation and is broadly implicated in tumorigenesis. However, the biological functions required by c-Myc to induce oncogenesis remain elusive. Here we show that c-Myc has a direct role in the control of DNA replication. c-Myc interacts with the pre-replicative(More)
After antigenic challenge, B cells enter the dark zone (DZ) of germinal centers (GCs) to proliferate and hypermutate their immunoglobulin genes. Mutants with greater affinity for the antigen are positively selected in the light zone (LZ) to either differentiate into plasma and memory cells or reenter the DZ. The molecular circuits that govern positive(More)
Minichromosome maintenance proteins (MCMs) form a family of conserved molecules that are essential for initiation of DNA replication. All eukaryotes contain six orthologous MCM proteins that function as heteromultimeric complexes. The sequencing of the complete genomes of several archaebacteria has shown that MCM proteins are also present in archaea. The(More)
MEF2B encodes a transcriptional activator and is mutated in ∼11% of diffuse large B cell lymphomas (DLBCLs) and ∼12% of follicular lymphomas (FLs). Here we found that MEF2B directly activated the transcription of the proto-oncogene BCL6 in normal germinal-center (GC) B cells and was required for DLBCL proliferation. Mutation of MEF2B resulted in enhanced(More)
The eukaryotic six-subunit origin recognition complex (ORC) governs the initiation site of DNA replication and formation of the prereplication complex. In this report we describe the isolation of the wild-type Homo sapiens (Hs)ORC and variants containing a Walker A motif mutation in the Orc1, Orc4, or Orc5 subunit using the baculovirus-expression system.(More)
Yeast and human ADA2 and GCN5 (y- and hADA2 and y- and hGCN5, respectively) have been shown to potentiate transcription in vivo and may function as adaptors to bridge physical interactions between DNA-bound activators and the basal transcriptional machinery. Recently it was shown that yGCN5 is a histone acetyltransferase (HAT), suggesting a link between(More)
CDC7 is an essential gene required for DNA replication in Saccharomyces cerevisiae. Cdc7p homologs have recently been identified in vertebrates, but their role in DNA replication has not yet been addressed. Here we show that antibodies to the Xenopus laevis homolog, xCdc7, interfere with DNA replication in vivo in developing embryos and in vitro in cycling(More)
Transcriptional adaptor proteins are required for full function of higher eukaryotic acidic activators in the yeast Saccharomyces cerevisiae, suggesting that this pathway of activation is evolutionarily conserved. Consistent with this view, we have identified possible human homologs of yeast ADA2 (yADA2) and yeast GCN5 (yGCN5), components of a putative(More)
The ability of p53 to function as a tumor suppressor is linked to its function as a transcriptional activator, since p53 mutants that do not transactivate are unable to suppress tumor cell growth. Previous studies identified an activation domain in the amino terminal 40 residues of the protein, a region that binds to several general transcription factors(More)