Carol Parish

Learn More
Age-related macular degeneration, a major cause of blindness for which no satisfactory treatments exist, leads to a gradual decrease in central high acuity vision. The accumulation of fluorescent materials, called lipofuscin, in retinal pigment epithelial cells of the aging retina is most pronounced in the macula. One of the fluorophores of retinal pigment(More)
PURPOSE To determine whether the lipofuscin fluorophore A2E participates in blue light-induced damage to retinal pigmented epithelial (RPE) cells. METHODS Human RPE cells (ARPE-19) accumulated A2E from 10, 50, and 100 microM concentrations in media, the levels of internalized A2E ranging from less than 5 to 64 ng/10(5) cells, as assayed by quantitative(More)
PURPOSE To study A2E, a component of retinal pigmented epithelial (RPE) cell lipofuscin, after its internalization by cultured human RPE cells. METHODS A2E was synthesized and incubated with an adult RPE cell line devoid of native lipofuscin. To investigate the cellular compartmentalization of A2E, cells were incubated simultaneously with A2E and a(More)
While hemoglobin is one of the most well characterized proteins due to its function in oxygen transport, few additional properties of hemoglobin have been described. While screening serum samples for novel antimicrobial factors, it was found that intact hemoglobin tetramers, including that from human, exhibited considerable activity against gram-positive(More)
The major hydrophobic fluorophore of the retinal pigment epithelium (RPE) is A2E, a pyridinium bis-retinoid derived from all-trans-retinal and phosphatidyl-ethanolamine. The accumulation of fluorophores such as A2E is implicated in the pathogenesis of age-related macular degeneration (AMD), a disease associated with the deterioration of central vision and a(More)
Halogen bonding (R-X···Y) is a qualitative analogue of hydrogen bonding that may prove useful in the rational design of artificial proteins and nucleotides. We explore halogen-bonded DNA base pairs containing modified guanine, cytosine, adenine and thymine nucleosides. The structures and stabilities of the halogenated systems are compared to the normal(More)
A state-averaged, multireference complete active space (CAS) approach was used for the determination of the vertical excitation energies of valence and Rydberg states of para-benzyne. Orbitals were generated with a 10- and 32-state averaged multiconfigurational self-consistent field approach. Electron correlation was included using multireference(More)
Mechanisms for the reaction of thiophene and 2-methylthiophene with molecular oxygen on both the triplet and singlet potential energy surfaces (PESs) have been investigated using ab initio methods. Geometries of various stationary points involved in the complex reaction routes are optimized at the MP2/6-311++G(d, p) level. The barriers and energies of(More)
9-Deaza-2'-deoxyguanosine (CdG) is a C-nucleoside and an analogue of the abundant promutagen 8-oxo-2'-deoxyguanosine (OdG). Like 2'-deoxyguanosine (dG), CdG should form a stable base pair with dC, but similar to OdG, CdG contains an N7-hydrogen that should allow it to also form a relatively stable base pair with dA. In order to further investigate the base(More)
An analysis of the conformational preferences of two maleimide substituted cyclohexane derivatives proposed as scaffolds for HIV-1 fusion inhibitors is presented. Hybrid Low Mode-Monte Carlo (1:1) conformational searches using seven different force fields were performed in combination with the GBSA(water) solvent model. Low energy structures identified in(More)