Carol A. Rouzer

Learn More
Arachidonic acid is released from membrane phospholipids upon cell stimulation (for example, by immune complexes and calcium ionophores) and converted to leukotrienes by a 5-lipoxygenase that also has leukotriene A4 synthetase activity. Leukotriene A4, an unstable epoxide, is hydrolyzed to leukotriene B4 or conjugated with glutathione to yield leukotriene(More)
Alkyne-modified phospholipids can be unambiguously identified and differentiated from native species in complex mixtures by formation of dicobalthexacarbonyl complexes. This reaction is specific for alkynes and is unaffected by other glycerophospholipid-related moieties. Enrichment of cells with alkyne-derivatized fatty acids or glycerophospholipids(More)
Mouse resident pulmonary macrophages were subdivided into alveolar (PAM) and interstitial (PTM) populations on the basis of accessibility to pulmonary lavage, and zymosan-induced arachidonic acid (20:4) metabolism was examined in both populations labeled with [3H]20:4. Maximal phagocytic doses of unopsonized zymosan induced the specific release of 11% of(More)
Resident mouse peritoneal macrophages release the slow-reacting substance leukotriene C (LTC) on exposure to particulate IgE immune complexes. Because these cells lose their responsiveness to an IgE stimulus after 4 h in culture, maximum release of 20:4 metabolites is observed before this time. However, a similar diminution in 20:4 metabolism was not(More)
We have investigated the effect of the endogenous genotoxin malondialdehyde (MDA) on cell cycle kinetics and the expression and biochemical activity of several cell cycle regulatory proteins. MDA treatment of two human cell lines (RKO and H1299) resulted in a 3- to 6-fold elevation in the levels of the major detectable MDA-DNA adduct, M1G-dR. The increase(More)
Ibuprofen and mefenamic acid are weak, competitive inhibitors of cyclooxygenase-2 (COX-2) oxygenation of arachidonic acid (AA) but potent, noncompetitive inhibitors of 2-arachidonoylglycerol (2-AG) oxygenation. The slow, tight-binding inhibitor, indomethacin, is a potent inhibitor of 2-AG and AA oxygenation whereas the rapidly reversible inhibitor,(More)
Indomethacin is a potent, time-dependent, nonselective inhibitor of the cyclooxygenase enzymes (COX-1 and COX-2). Deletion of the 2'-methyl group of indomethacin produces a weak, reversible COX inhibitor, leading us to explore functionality at that position. Here, we report that substitution of the 2'-methyl group of indomethacin with trifluoromethyl(More)
Studies of the response of RAW264.7 cells (RAW) to lipopolysaccharide (LPS) were carried out to determine why these cells do not demonstrate the prostaglandin (PG)-dependent autocrine regulation of tumor necrosis factor-␣ (TNF-␣) secretion observed in primary resident peritoneal macrophages (RPMs). The major cyclooxygenase (COX) prod-RAW produced high(More)
The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis(More)