Carol A. Raymond

Learn More
The mineralogy of Vesta, based on data obtained by the Dawn spacecraft's visible and infrared spectrometer, is consistent with howardite-eucrite-diogenite meteorites. There are considerable regional and local variations across the asteroid: Spectrally distinct regions include the south-polar Rheasilvia basin, which displays a higher diogenitic component,(More)
Vesta is a large differentiated rocky body in the main asteroid belt that accreted within the first few million years after the formation of the earliest solar system solids. The Dawn spacecraft extensively imaged Vesta's surface, revealing a collision-dominated history. Results show that Vesta's cratering record has a strong north-south dichotomy. Vesta's(More)
We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft’s HighAltitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large(More)
Using Dawn's Gamma Ray and Neutron Detector, we tested models of Vesta's evolution based on studies of howardite, eucrite, and diogenite (HED) meteorites. Global Fe/O and Fe/Si ratios are consistent with HED compositions. Neutron measurements confirm that a thick, diogenitic lower crust is exposed in the Rheasilvia basin, which is consistent with global(More)
We present global lithological maps of the Vestan surface based on Dawn mission’s Visible InfraRed (VIR) Spectrometer acquisitions with a spatial sampling of 200 m. The maps confirm the results obtained with the data set acquired by VIR with a spatial sampling of 700 m, that the reflectance spectra of Vesta’s surface are dominated by pyroxene absorptions(More)
The Moon experienced an intense period of impacts about 4 Gyr ago. This cataclysm is thought to have affected the entire inner Solar System and has been constrained by the radiometric dating of lunar samples: 40Ar–39Ar ages reflect the heating and degassing of target rocks by large basin-forming impacts on the Moon. Radiometric dating of meteorites from(More)
We investigated the origin of unusual pitted terrain on asteroid Vesta, revealed in images from the Dawn spacecraft. Pitted terrain is characterized by irregular rimless depressions found in and around several impact craters, with a distinct morphology not observed on other airless bodies. Similar terrain is associated with numerous martian craters, where(More)
Vesta's surface is characterized by abundant impact craters, some with preserved ejecta blankets, large troughs extending around the equatorial region, enigmatic dark material, and widespread mass wasting, but as yet an absence of volcanic features. Abundant steep slopes indicate that impact-generated surface regolith is underlain by bedrock. Dawn(More)
The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta's south pole, whose excavation was sufficient to produce(More)
Olivine is a major component of the mantle of differentiated bodies, including Earth. Howardite, eucrite and diogenite (HED) meteorites represent regolith, basaltic-crust, lower-crust and possibly ultramafic-mantle samples of asteroid Vesta, which is the lone surviving, large, differentiated, basaltic rocky protoplanet in the Solar System. Only a few of(More)