Learn More
1. The effect of guanosine on L-[2,3-3H]glutamate uptake was investigated in brain cortical slices under normal or oxygen-glucose deprivation (OGD) conditions. 2. In slices exposed to physiological conditions, guanosine (1-100 microM) stimulated glutamate uptake (up to 100%) in a concentration-dependent manner when a high (100 microM) but not a low (1(More)
High levels of phenylalanine (Phe) are the biochemical hallmark of phenylketonuria (PKU), a neurometabolic disorder clinically characterized by severe mental retardation and other brain abnormalities, including cortical atrophy and microcephaly. Considering that the pathomechanisms leading to brain damage and particularly the marked cognitive impairment in(More)
Phenylketonuria is the most frequent disturbance of amino acid metabolism. Treatment for phenylketonuric patients consists of phenylalanine intake restriction. However, there are patients who do not adhere to treatment and/or are not submitted to neonatal screening. These individuals are more prone to develop brain damage due to long-lasting toxic effects(More)
Pyridoxine-dependent seizures are a disorder of GABA metabolism probably due to a defective binding of pyridoxal phosphate coenzyme (PALP) with glutamate decarboxylase (GAD), the rate-limiting enzyme in GABA synthesis. The resulting GABA deficiency causes severe epilepsy in infancy. We report on a boy with seizures starting soon after birth, and only(More)
Patients affected by X-linked adrenoleukodystrophy (X-ALD) present a progressive brain and peripheral demyelination and adrenal cortex insufficiency, associated with accumulation of the very long chain fatty acids (VLCFA) hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in different tissues and biological fluids. X-ALD is characterized by(More)
The disaccharide trehalose is considered as a universal stress molecule, protecting cells and biomolecules from injuries imposed by high osmolarity, heat, oxidation, desiccation and freezing. Chromohalobacter salexigens is a halophilic and extremely halotolerant γ-proteobacterium of the family Halomonadaceae. In this work, we have investigated the role of(More)
Maple syrup urine disease (MSUD) is an autosomal recessive inborn error of metabolism caused by deficiency of the activity of the mitochondrial enzyme complex branched-chain α-keto acid dehydrogenase (BCKAD) leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine and their corresponding branched-chain α-keto acids.(More)
Phenylketonuria (PKU) is an inborn error of amino acid metabolism caused by severe deficiency of phenylalanine hydroxylase activity, leading to the accumulation of phenylalanine and its metabolites in blood and tissues of affected patients. Phenylketonuric patients present as the major clinical feature mental retardation, whose pathomechanisms are poorly(More)
Maple syrup urine disease (MSUD) or branched-chain alpha-keto aciduria (BCKA) is an inherited disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKAD) activity. The blockage of this pathway leads to tissue accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine and their respective(More)
We report a chemically-induced model of maple syrup urine disease (MSUD) in 10- and 30-day-old rats produced by subcutaneous administration of a branched-chain amino acids (BCAA) pool along with the analyses of plasma and brain amino acid levels by HPLC at 0-120 min after administration. We observed an increase of plasma leucine (Leu), isoleucine (Ile) and(More)