Learn More
Hyperglycaemia in critically ill patients increases the risk of further complications and mortality. This paper introduces a model capable of capturing the essential glucose and insulin kinetics in patients from retrospective data gathered in an intensive care unit (ICU). The model uses two time-varying patient specific parameters for glucose effectiveness(More)
BACKGROUND Critically ill patients are often hyperglycemic and extremely diverse in their dynamics. Consequently, fixed protocols and sliding scales can result in error and poor control. Tight glucose control has been shown to significantly reduce mortality in critical care. An improved physiological system model of the glucose-insulin dynamics of a(More)
The Circle of Willis (CoW) is a ring-like structure of blood vessels found beneath the hypothalamus at the base of the brain. Its main function is to distribute oxygen-rich arterial blood to the cerebral mass. A 1-dimensional model of the CoW has been created to simulate a series of possible clinical scenarios such as occlusions in afferent arteries, absent(More)
The objective is to demonstrate the effectiveness of a simple automated insulin infusion for controlling the rise and duration of blood glucose excursion following a glucose challenge in critically ill patients with impaired glucose tolerance. A two-compartment model of the glucose regulatory system was developed for intravenous infusion control design. On(More)
Critically ill patients are often hyperglycemic and extremely diverse in their dynamics. Consequently, fixed protocols and sliding scales can result in error and poor control. A two-compartment glucose-insulin system model that accounts for time-varying insulin sensitivity and endogenous glucose removal, along with two different saturation kinetics is(More)
Tight regulation of blood glucose can significantly reduce mortality in critical illness. Critically ill patients are extremely diverse in the dynamics of their hyperglycaemia. Hence, responses can vary significantly, due to variations in insulin levels, effective insulin utilization, glucose absorption and other factors. Consequently, fixed protocols and(More)
Reported insulin-stimulated glucose removal saturation levels vary widely between individuals and trade off with insulin sensitivity in model-based control methods. A non-linear model and adaptive insulin infusion protocol enabled high-precision blood glucose control in critically ill patients using a constant insulin-stimulated glucose removal saturation(More)
Close control of blood glucose levels significantly reduces vascular complications in Type 1 and Type 2 diabetic individuals. Heavy derivative controllers using the data density available from emerging biosensors are developed to provide tight, optimal control of elevated blood glucose levels, while robustly handling variation in patient response. A(More)
Hyperglycaemia in critically ill patients increases the risk of further complications and mortality. A long-term verification of a model that captures the essential glucose- and insulin-kinetics is presented, using retrospective data gathered in an intensive care unit (ICU). The model uses only two patient specific parameters, for glucose clearance and(More)
  • 1