Carmen R. Valdivia

Learn More
CONTEXT Fatal arrhythmias from occult long QT syndrome may be responsible for some cases of sudden infant death syndrome (SIDS). Because patients who have long QT syndrome with sodium channel gene (SCN5A) defects have an increased frequency of cardiac events during sleep, and a recent case is reported of a sporadic SCN5A mutation in an infant with near(More)
BACKGROUND Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates.(More)
Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for approximately 75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding alpha1-syntrophin, was performed in a cohort of LQTS patients that were negative for mutations in the 11 known LQTS-susceptibility genes. A(More)
Electrophysiological remodeling of ion channels in heart failure causes action potential prolongation and plays a role in arrhythmia mechanism. The importance of down-regulation of potassium currents is well-known, but a role for Na current (I(Na)) in heart failure is less well established. We studied I(Na) in heart failure ventricular cells from a canine(More)
BACKGROUND AND PURPOSE Fluoxetine (Prozac) is a widely prescribed drug in adults and children, and it has an active metabolite, norfluoxetine, with a prolonged elimination time. Although uncommon, Prozac causes QT interval prolongation and arrhythmias; a patient who took an overdose of Prozac exhibited a prolonged QT interval (QTc 625 msec). We looked for(More)
Amino acid sequence variations in SCN5A are known to affect function of wild-type channels and also those with coexisting mutations; therefore, it is important to know the exact sequence and function of channels most commonly present in human myocardium. SCN5A was analyzed in control panels of human alleles, demonstrating that the existing clones (hH1,(More)
BACKGROUND Autopsy-negative sudden unexplained death, including sudden infant death syndrome, can be caused by cardiac channelopathies such as Brugada syndrome (BrS). Type 1 BrS, caused by mutations in the SCN5A-encoded sodium channel, accounts for approximately 20% of BrS. Recently, a novel mutation in the glycerol-3-phosphate dehydrogenase 1-like gene(More)
Mutations in the cardiac Na(+) channel gene SCN5A cause loss of function and underlie arrhythmia syndromes. SCN5A in humans has two splice variants, one lacking a glutamine at position 1077 (Q1077del) and one containing Q1077. We investigated the effect of splice variant background on loss of function and rescue for G1406R, a mutation reported to cause(More)
BACKGROUND Approximately 10% of sudden infant death syndrome (SIDS) cases may stem from potentially lethal cardiac channelopathies, with approximately half of channelopathic SIDS involving the Na(V)1.5 cardiac sodium channel. Recently, Na(V) beta subunits have been implicated in various cardiac arrhythmias. Thus, the 4 genes encoding Na(V) beta subunits(More)
BACKGROUND Considering that approximately 2% of Caucasian controls host rare, nonsynonymous variants in the SCN5A-encoded cardiac sodium channel, caution must be exercised when interpreting SCN5A genetic test results for long QT syndrome (LQTS). OBJECTIVE The purpose of this study was to determine if A572D-SCN5A is a pathogenic mutation, a possible(More)