Carmen M. Moure

Learn More
The first X-ray structures of an intein-DNA complex, that of the two-domain homing endonuclease PI-SceI bound to its 36-base pair DNA substrate, have been determined in the presence and absence of Ca(2+). The DNA shows an asymmetric bending pattern, with a major 50 degree bend in the endonuclease domain and a minor 22 degree bend in the splicing domain(More)
Polyadenylation of mRNAs in poxviruses, crucial for virion maturation, is carried out by a poly(A) polymerase heterodimer composed of a catalytic component, VP55, and a processivity factor, VP39. The ATP-gamma-S bound and unbound crystal structures of the vaccinia polymerase reveal an unusual architecture for VP55 that comprises of N-terminal, central or(More)
I-SceI is a homing endonuclease that specifically cleaves an 18-bp double-stranded DNA. I-SceI exhibits a strong preference for cleaving the bottom strand DNA. The published structure of I-SceI bound to an uncleaved DNA substrate provided a mechanism for bottom strand cleavage but not for top strand cleavage. To more fully elucidate the I-SceI catalytic(More)
The crystal structure of human deoxy hemoglobin (Hb) complexed with a potent allosteric effector (2-[4-[[(3,5-dimethylanilino)carbonyl]methyl]phenoxy]-2-methylpropionic acid) = RSR-13) is reported at 1.85 A resolution. Analysis of the hemoglobin:effector complex indicates that two of these molecules bind to the central water cavity of deoxy Hb in a(More)
The I-SceI homing endonuclease enhances gene targeting by introducing double-strand breaks at specific chromosomal loci, thereby increasing the recombination frequency. Here, we report the crystal structure of the enzyme complexed to its DNA substrate and Ca(2+) determined at 2.25A resolution. The structure shows the prototypical beta-saddle of LAGLIDADG(More)
The PI-SceI protein from Saccharomyces cerevisiae is a member of the LAGLIDADG family of homing endonucleases that have been used in genomic engineering. To assess the flexibility of the PI-SceI-binding interaction and to make progress towards the directed evolution of homing endonucleases that cleave specified DNA targets, we applied a two-hybrid method to(More)
The ubiquitous MRG/MORF family of proteins is involved in cell senescence, or the terminal loss of proliferative potential, a model for aging and tumor suppression at the cellular level. These proteins are defined by the approximately 20 kDa MRG domain that binds a plethora of transcriptional regulators and chromatin-remodeling factors, including the(More)
The N-terminal domain (NTD) of steroid receptors harbors a transcriptional activation function (AF1) that is composed of an intrinsically disordered polypeptide. We examined the interaction of the TATA-binding protein (TBP) with the NTD of the progesterone receptor (PR) and its ability to regulate AF1 activity through coupled folding and binding. As(More)
Intrinsically disordered (ID) regions of proteins commonly exist within transcription factors, including the N-terminal domain (NTD) of steroid hormone receptors (SHRs) that possesses a powerful activation function, AF1 region. The mechanisms by which SHRs pass signals from a steroid hormone to control gene expression remain a central unresolved problem.(More)
The rational design and X-ray crystallographic analyses of two symmetrical allosteric effectors of hemoglobin (Hb) are reported. Compound design was directed by the previously solved co-crystal structure of one of the most potent allosteric effectors of Hb, 2-[4-[(3,5-dichlorophenylcarbamoyl)-methyl]-phenoxy]-2-methylpropionic acid (RSR4), which revealed(More)
  • 1