Learn More
Understanding the mechanisms by which proteins fold from disordered amino-acid chains to spatially ordered structures remains an area of active inquiry. Molecular simulations can provide atomistic details of the folding dynamics which complement experimental findings. Conventional order parameters, such as root-mean-square deviation and radius of gyration,(More)
Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and(More)
Progress of development is commonly reconstructed from imaging snapshots of chemical or mechanical processes in fixed tissues. As a first step in these reconstructions, snapshots must be spatially registered and ordered in time. Currently, image registration and ordering are often done manually, requiring a significant amount of expertise with a specific(More)
Progress of development is commonly reconstructed from imaging snapshots of chemical or mechanical processes in fixed tissues. As a first step in these reconstructions, snapshots must be spatially registered and ordered in time. Currently, image registration and ordering are often done manually, requiring a significant amount of expertise with a specific(More)
Articles you may be interested in Wang-Landau density of states based study of the folding-unfolding transition in the mini-protein Trp-cage (TC5b) Enhanced sampling molecular dynamics simulation captures experimentally suggested intermediate and unfolded states in the folding pathway of Trp-cage miniprotein Folding processes of the B domain of protein A to(More)
  • 1