Carmela Rigolino

Learn More
Myelodysplastic syndromes (MDSs) arise from a defective hematopoietic stem/progenitor cell. Consequently, there is an urgent need to develop targeted therapies capable of eliminating the MDS-initiating clones. We identified that IRAK1, an immune-modulating kinase, is overexpressed and hyperactivated in MDSs. MDS clones treated with a small molecule IRAK1(More)
Bortezomib (Velcade) is used widely for the treatment of various human cancers; however, its mechanisms of action are not fully understood, particularly in myeloid malignancies. Bortezomib is a selective and reversible inhibitor of the proteasome. Paradoxically, we find that bortezomib induces proteasome-independent degradation of the TRAF6 protein, but not(More)
Despite the high response rates of individuals with myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)) to treatment with lenalidomide (LEN) and the recent identification of cereblon (CRBN) as the molecular target of LEN, the cellular mechanism by which LEN eliminates MDS clones remains elusive. Here we performed an RNA interference(More)
In vitro studies suggest that haploinsufficiency is involved in the pathogenesis of myelodysplastic syndromes (MDS). In patients with del5q cytogenetic abnormality, RPS-14 and microRNAs (miRNAs) play a major role. In a multicenter phase II single-arm trial with lenalidomide in anemic primary del5q MDS patients with low- or int-1 risk IPSS, biological(More)
1Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; 2Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH; Departments of 3Rheumatology and 4Pediatric Oncology/Hematology, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands; 5Bone Marrow Unit,(More)
  • 1