Learn More
A hyperelastic pressure transducer is fabricated by embedding silicone rubber with microchannels of conductive liquid eutectic gallium–indium. Pressing the surface of the elastomer with pressures in the range of 0–100 kPa will deform the cross-section of underlying channels and change their electric resistance by as much as 50%. Microchannels with(More)
We propose iSkin, a novel class of skin-worn sensors for touch input on the body. iSkin is a very thin sensor overlay, made of biocompatible materials, and is flexible and stretchable. It can be produced in different shapes and sizes to suit various locations of the body such as the finger, forearm, or ear. Integrating capacitive and resistive touch(More)
Surface micropatterning enhances the interfacial sliding resistance of magnetorheological fluid at low magnetic field ͑10–35 mT͒. Fluid is confined to surface microchannels, resulting in the formation of spatially aligned magnetic domains. The channels are supported by a pair of overlapping ribbons, which, along with the surrounding fluid, are enclosed in a(More)
A hyperelastic, thin, transparent pressure sensitive keypad is fabricated by embedding a silicone rubber film with conductive liquid-filled microchannels. Applying pressure to the surface of the elastomer deforms the cross-section of underlying microchannels and changes the electrical resistance across the affected channels. Perpendicular conductive(More)
We introduce a curvature sensor composed of a thin, transparent elastomer film (polydimethylsiloxane, PDMS) embedded with a microchannel of conductive liquid (eutectic Gallium Indium, eGaIn) and a sensing element. Bending the sensor exerts pressure on the embedded microchannel via the sensing element. Deformation of the cross-section of the microchannel(More)
Liquid-phase electronic circuits are patterned on an elastomer substrate with a microcontact printer. The printer head dips into a pool of a liquid-phase gallium-indium alloy, e.g., eutectic gallium-indium (EGaIn) or gallium-indium-tin (Galinstan), and deposits a single drop on a silicone elastomer substrate. After patterned deposition, the liquid-phase(More)
A proposed adaptive soft orthotic device performs motion sensing and production of assistive forces with a modular, pneumatically-driven, hyper-elastic composite. Wrapping the material around a joint will allow simultaneous motion sensing and active force response through shape and rigidity control. This monolithic elastomer sheet contains a series of(More)
A method to produce soft and stretchable microelectronics composed of a liquid-phase Gallium-Indium alloy with micron-scale circuit features is introduced. Microchannels are molded onto the surface of a poly(dimethylsiloxane) (PDMS) elastomer and filled with EGaIn using a micro-transfer deposition step that exploits the unique wetting properties of EGaIn in(More)
Liquid phase electronic circuits are created by freeze casting gallium-indium (GaIn) alloys, such as eutectic gallium-indium (EGaIn), and encapsulating these frozen components within an elastomer. These metal alloys are liquid at room temperature, and can be cast using either injection or a vacuum to fill a PDMS mold and placing the mold in a freezer. Once(More)