Carmel M. Quinn

Learn More
OBJECTIVE Cholesterol efflux from macrophages in the artery wall, a key cardioprotective mechanism, is largely coordinated by the nuclear oxysterol-activated liver X receptor, LXRalpha. We investigated the effect of statins on LXR target gene expression and cholesterol efflux from human macrophages. METHODS AND RESULTS In human macrophages (THP-1 cell(More)
Chemokines are important mediators of macrophage and T-cell recruitment in a number of inflammatory pathologies, and chemokines expressed in atherosclerotic lesions may play an important role in mononuclear cell recruitment and macrophage differentiation. We have analyzed the expression of the linked chromosome 16q13 genes that encode macrophage-derived(More)
The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the(More)
AIM The effects of 24(S),25-epoxycholesterol (24,25EC) on aspects of cholesterol homeostasis is well-documented. When added to cells, 24,25EC decreases cholesterol synthesis and up-regulates cholesterol efflux genes, including ABCA1. Synthesis of 24,25EC occurs in a shunt of the mevalonate pathway which also produces cholesterol. Therefore, 24,25EC(More)
RATIONALE High-density lipoprotein (HDL) is a heterogeneous population of particles. Differences in the capacities of HDL subfractions to remove cellular cholesterol may explain variable correlations between HDL-cholesterol and cardiovascular risk and inform future targets for HDL-related therapies. The ATP binding cassette transporter A1 (ABCA1)(More)
Cholesterol is an essential component of the CNS and its metabolism in the brain has been implicated in various neurodegenerative diseases. The oxysterol produced from cholesterol, 24(S)-hydroxycholesterol, is known to be an important regulator of brain cholesterol homeostasis. In this study, we focussed on another oxysterol, 24(S),25-epoxycholesterol(More)
AIMS Women with inherited pathogenic mutations in the BRCA1 or BRCA2 genes have up to an 85% risk of developing breast cancer in their lifetime. However, only about 20% of familial breast cancer is attributed to mutations in BRCA1 and BRCA2, while a further 5-10% are attributed to mutations in other rare susceptibility genes such as TP53, STK11, PTEN, ATM(More)
  • 1