Carmel Domshlak

Learn More
Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dependence and independence of preference statements under a(More)
In recent years, CP-nets have emerged as a useful tool for supporting preference elicitation, reasoning, and representation. CP-nets capture and support reasoning with qualitative conditional preference statements, statements that are relatively natural for users to express. In this paper, we extend the CP-nets formalism to handle another class of very(More)
Loosely coupled multi-agent systems are perceived as easier to plan for because they require less coordination between agent sub-plans. In this paper we set out to formalize this intuition. We establish an upper bound on the complexity of multi-agent planning problems that depends exponentially on two parameters quantifying the level of agents’ coupling,(More)
Current heuristic estimators for classical domain-independent planning are usually based on one of four ideas: delete relaxations, critical paths, abstractions, and, most recently, landmarks. Previously, these different ideas for deriving heuristic functions were largely unconnected. We prove that admissible heuristics based on these ideas are in fact very(More)
Planning landmarks are facts that must be true at some point in every solution plan. Previous work has very successfully exploited planning landmarks in satisficing (non-optimal) planning. We propose a methodology for deriving admissible heuristic estimates for cost-optimal planning from a set of planning landmarks. The resulting heuristics fall into a(More)
Automated domain factoring, and planning methods that utilize them, have long been of interest to planning researchers. Recent work in this area yielded new theoretical insight and algorithms, but left many questions open: How to decompose a domain into factors? How to work with these factors? And whether and when decomposition-based methods are useful?(More)
We present a fully distributed multi-agent planning algorithm. Our methodology uses distributed constraint satisfaction to coordinate between agents, and local planning to ensure the consistency of these coordination points. To solve the distributed CSP efficiently, we must modify existing methods to take advantage of the structure of the underlying(More)