Carlos Simon Guzman

Learn More
The Wx gene encodes the granule-bound starch synthase I or waxy protein, which is the sole enzyme responsible for amylose synthesis in wheat seeds. Triticum urartu and einkorn (T. monococcum L. ssp. monococcum), which are related to the A genome of bread wheat, could be important sources of variation for this gene. This study evaluated the Wx gene(More)
This study examines genomic prediction within 8416 Mexican landrace accessions and 2403 Iranian landrace accessions stored in gene banks. The Mexican and Iranian collections were evaluated in separate field trials, including an optimum environment for several traits, and in two separate environments (drought, D and heat, H) for the highly heritable traits,(More)
Wx gene encodes for the granule-bound starch synthase I or waxy protein, which is the sole enzyme responsible for amylose synthesis in wheat seeds. The Aegilops species, which are related to wheat, could be important sources of variation in this gene. In addition to its role in starch quality, this gene has been used in phylogenetic studies of wheat. The(More)
Starch composition which is dependent on the waxy protein, the enzyme responsible for amylose synthesis in the grain, is an important aspect of the wheat quality. In this report, we describe the characterization of a novel Wx-A1 allele (Wx-A1g formerly known as -Wx-A1a) in Spanish spelt wheat lines which is responsible for a remarkable decline in the(More)
Mark Ellis was omitted from the author list in the original version of this Article. In addition, there was a typographical error in the spelling of the author Kai Sonder which was incorrectly given as Kai Sonders. These errors have been corrected in the PDF and HTML versions of the Article. The Acknowledgements section now reads: The authors duly(More)
Granule Bound Starch Synthase I, or waxy protein, is the sole enzyme responsible for the accumulation of amylose during the development of starch granules in wheat. The full coding region of the waxy (Wx) gene was sequenced in Triticum urartu, (a wild diploid species) and is related to the A genome of polyploid wheats. The Wx gene of T. urartu (Wx-A u 1)(More)
Grain hardness is one of the most important characteristics of wheat quality. Soft endosperm is associated with the presence of two proteins in the wild form, puroindoline a and b. The puroindoline genes and their derived proteins are present in the putative wheat diploid ancestors which are thought to be the donors of the A, B and D genomes in common and(More)
Grain hardness is a major factor determining milling performance of common wheat. It determines the amount of damaged starch generated during milling, and therefore the end use of a given variety. One hundred and two lines from 15 Mexican wheat landraces were analyzed for grain hardness and for its genetic control. Sixteen lines were hard and 86 were(More)
The waxy (Wx) gene encodes a granule-bound starch synthase (also called Wx protein) that is involved in synthesizing amylose in the starch grains of cereals, including common wheat (Triticum aestivum L.). Because amylose content affects the quality of food products made from wheat flour, Wx alleles affecting amylose content are of interest. Five wheat Wx(More)
The wild diploid wheat (Triticum urartu Thum. ex Gandil.) is a potential gene source for wheat breeding, as this species has been identified as the A-genome donor in polyploid wheats. One important wheat breeding trait is bread-making quality, which is associated in bread wheat (T. aestivum ssp. aestivum L. em. Thell.) with the high-molecular-weight(More)