Carlos Scott

Learn More
4.1 Proteins are a family of multifunctional cytoskeletal components (4.1R, 4.1G, 4.1N and 4.1B) derived from four related genes, each of which is expressed in the nervous system. Using subcellular fractionation, we have investigated the possibility that 4.1 proteins are components of forebrain postsynaptic densities, cellular compartments enriched in(More)
It is established that variations in the structure and activities of betaI spectrin are mediated by differential mRNA splicing. The two betaI spectrin splice forms so far identified have either long or short C-terminal regions. Are analogous mechanisms likely to mediate regulation of betaII spectrins? Thus far, only a long form of betaII spectrin is(More)
An important aspect of the function of the membrane-associated cytoskeleton has been suggested to be to trap and retain selected transmembrane proteins at points on the cell surface specified by cell adhesion molecules. In the process, cell adhesion molecules are cross-linked to each other, and so junctional complexes are strengthened. In this short review,(More)
At the C-terminus of all known 4.1 proteins is a sequence domain unique to these proteins, known as the C-terminal domain (CTD). Mammalian CTDs are associated with a growing number of protein-protein interactions, although such activities have yet to be associated with invertebrate CTDs. Mammalian CTDs are generally defined by sequence alignment as encoded(More)
Deposition of dispersed and ultradispersed solid particles in cylindrical channels has received considerable attention due to its practical significance and direct application in industry. However, an adequate mathematical expression that studies the separation and suspension of dispersed and ultradispersed particles present in a horizontal cylindrical(More)
  • 1