Learn More
We investigated some mechanisms, which allow maize genotypes to adapt to soils which are low in available P. Dry matter production, root/shoot-ratio, root length and root exudation of organic acids and acid phosphatase were investigated in four maize genotypes grown under P-deficient and P-sufficient conditions in sterile hydroponic culture. A low-P(More)
In this work, capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS) is proposed to identify and quantify the main metabolites in three lines of genetically modified (GM) maize and their corresponding nontransgenic parental lines grown under identical conditions. The shotgun-like approach for metabolomics developed in this work includes(More)
Concentrated animals feeding operations (CAFOs) often pose a negative environmental impact due to the uncontrolled spreading of manure into soils that ends up in the release of organic matter and nutrients into water bodies. Conventional aerobic methods treating CAFOs wastewater require intensive oxygenation, which significantly increases the operational(More)
Breeding programs for acid-soil tolerance are desirable as a relatively inexpensive and permanent way for increasing maize (Zea mays L.) yield on these soils. Our objective was to compare the genetic effects controlling the expression of maize traits in acid and non-acid soils. Seven related and one unrelated inbred lines, with different levels of tolerance(More)
In this work, capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF-MS) is proposed to identify and quantify the main metabolites found in transgenic soybean and its corresponding non-transgenic parental line both grown under identical conditions. The procedure includes optimization of metabolites extraction, separation by CE, on-line(More)
In this work, the potential of combining capillary electrophoresis-time-of-flight-mass spectrometry (CE-TOF-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) for metabolomics of genetically modified organisms (GMOs) is demonstrated. Thus, six different varieties of maize, three of them transgenic (PR33P66 Bt, Tietar Bt and(More)
In this work, three modified CDs (mCDs), namely 6-deoxy-6-[1-(2-amino)ethylamino]-beta-CD, 6-deoxy-6-[N-(2-methylamino)pyridine)]-beta-CD and 3-monodeoxy-3-monoamino-beta-CD, are investigated as chiral selectors for CE with LIF (CE-LIF) and CE-TOF-MS. The potential of these three mCDs as chiral selectors in CE was also compared with the unmodified beta-CD(More)
In this work, two different CE-MS instruments, namely, CE-ESI-IT-MS and CE-ESI-TOF-MS, applied to analyse intact proteins from complex samples are investigated. The aim of this work was to compare both instruments in terms of LOD, number of proteins detected, and precision and repeatability in the determination of the protein relative molecular mass.(More)
The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and(More)
A fuel cell operating with aqueous sodium borohydride and hydrogen peroxide streams, with one, two and four cells (electrode area 64, 128 and 256 cm 2) connected in a bipolar mode in a filterpress flow cell is reported. The oxidation of borohydride ion was carried out on Au/C particles supported on a carbon felt electrode while the reduction of hydrogen(More)