Carlos J. Becker

Learn More
We present a novel, fully-discriminative method for curvilinear structure segmentation that simultaneously learns a classifier and the features it relies on. Our approach requires almost no parameter tuning and, in the case of 2D images, removes the requirement for hand-designed features, thus freeing the practitioner from the time-consuming tasks of(More)
We present a new approach for the automated segmentation of synapses in image stacks acquired by electron microscopy (EM) that relies on image features specifically designed to take spatial context into account. These features are used to train a classifier that can effectively learn cues such as the presence of a nearby post-synaptic region. As a result,(More)
We propose a novel approach to automatically tracking cell populations in time-lapse images. To account for cell occlusions and overlaps, we introduce a robust method that generates an over-complete set of competing detection hypotheses. We then perform detection and tracking simultaneously on these hypotheses by solving to optimality an integer program(More)
Automatic visual detection of instruments in minimally invasive surgery (MIS) can significantly augment the procedure experience for operating clinicians. In this paper, we present a novel technique for detecting surgical instruments by constructing a robust and reliable instrument-part detector. While such detectors are typically slow to use, we introduce(More)
We propose a new approach to detecting irregular curvilinear structures in noisy image stacks. In contrast to earlier approaches that rely on circular models of the cross-sections, ours allows for the arbitrarily-shaped ones that are prevalent in biological imagery. This is achieved by maximizing the image gradient flux along multiple directions and radii,(More)
We present a new approach for the automated segmentation of excitatory synapses in image stacks acquired by electron microscopy. We rely on a large set of image features specifically designed to take spatial context into account and train a classifier that can effectively utilize cues such as the presence of a nearby post-synaptic region. As a result, our(More)
Cascade-style approaches to implementing ensemble classifiers can deliver significant speed-ups at test time. While highly effective, they remain challenging to tune and their overall performance depends on the availability of large validation sets to estimate rejection thresholds. These characteristics are often prohibitive and thus limit their(More)
Efficient and accurate segmentation of cellular structures in microscopic data is an essential task in medical imaging. Many state-of-the-art approaches to image segmentation use structured models whose parameters must be carefully chosen for optimal performance. A popular choice is to learn them using a large-margin framework and more specifically(More)
We propose a fully-supervised approach to training classifiers that automatically learn features directly from image data. This drops the dependency on hand-designed filters and features, which is generally a trial-and-error process and often yields far-from-optimal results. Our approach relies on the Gradient Boosting framework, learning discriminative(More)