Learn More
Industrial penicillin production with the filamentous fungus Penicillium chrysogenum is based on an unprecedented effort in microbial strain improvement. To gain more insight into penicillin synthesis, we sequenced the 32.19 Mb genome of P. chrysogenum Wisconsin54-1255 and identified numerous genes responsible for key steps in penicillin production. DNA(More)
The production of mycotoxins and other secondary metabolites in Penicillium roqueforti is of great interest because of its long history of use in blue-veined cheese manufacture. In this article, we report the cloning and characterization of the roquefortine gene cluster in three different P. roqueforti strains isolated from blue cheese in the USA (the type(More)
The phylum Apicomplexa includes a large group of protozoan parasites responsible for a wide range of animal and human diseases. Destructive pathogens, such as Plasmodium falciparum and Plasmodium vivax, causative agents of human malaria, Cryptosporidium parvum, responsible of childhood diarrhoea, and Toxoplasma gondii, responsible for miscarriages and(More)
SUMMARY Non-ribosomal peptide synthetases (NRPSs) are multi-modular enzymes, which biosynthesize many important peptide compounds produced by bacteria and fungi. Some studies have revealed that an individual domain within the NRPSs shows significant substrate selectivity. The discovery and characterization of non-ribosomal peptides are of great interest for(More)
Fungi comprise a vast group of microorganisms including the Ascomycota (majority of all described fungi), the Basidiomycota (mushrooms or higher fungi), and the Zygomycota and Chytridiomycota (basal or lower fungi) that produce industrially interesting secondary metabolites, such as β-lactam antibiotics. These compounds are one of the most commonly(More)
The transcription factor CreA is the main regulator responsible for carbon repression in filamentous fungi. CreA is a wide domain regulator that binds to regulatory elements in the promoters of target genes to repress their transcription. Penicillin biosynthesis and the expression of penicillin biosynthetic genes are subject to carbon repression. However,(More)
Peroxisomes are eukaryotic organelles surrounded by a single bilayer membrane, containing a variety of proteins depending on the organism; they mainly perform degradation reactions of toxic metabolites (detoxification), catabolism of linear and branched-chain fatty acids, and removal of H2O2 (formed in some oxidative processes) by catalase. Proteins named(More)
BACKGROUND The secretion of heterologous animal proteins in filamentous fungi is usually limited by bottlenecks in the vesicle-mediated secretory pathway. RESULTS Using the secretion of bovine chymosin in Aspergillus awamori as a model, we found a drastic increase (40 to 80-fold) in cells grown with casein or casein phosphopeptides (CPPs). CPPs are rich(More)
The Trypanosomatidae family, composed of unicellular parasites, causes severe vector-borne diseases that afflict human populations worldwide. Chagas disease, sleeping sickness, as well as different sorts of leishmaniases are amongst the most important infectious diseases produced by Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively.(More)
BACKGROUND Penicillium chrysogenum converts isopenicillin N (IPN) into hydrophobic penicillins by means of the peroxisomal IPN acyltransferase (IAT), which is encoded by the penDE gene. In silico analysis of the P. chrysogenum genome revealed the presence of a gene, Pc13g09140, initially described as paralogue of the IAT-encoding penDE gene. We have termed(More)