Carlos G Read

Learn More
Nanoparticles of nickel phosphide (Ni2P) have been investigated for electrocatalytic activity and stability for the hydrogen evolution reaction (HER) in acidic solutions, under which proton exchange membrane-based electrolysis is operational. The catalytically active Ni2P nanoparticles were hollow and faceted to expose a high density of the Ni2P(001)(More)
Nanoparticles of cobalt phosphide, CoP, have been prepared and evaluated as electrocatalysts for the hydrogen evolution reaction (HER) under strongly acidic conditions (0.50 M H2SO4, pH 0.3). Uniform, multi-faceted CoP nanoparticles were synthesized by reacting Co nanoparticles with trioctylphosphine. Electrodes comprised of CoP nanoparticles on a Ti(More)
Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because(More)
Amorphous tungsten phosphide (WP), which has been synthesized as colloidal nanoparticles with an average diameter of 3 nm, has been identified as a new electrocatalyst for the hydrogen-evolution reaction (HER) in acidic aqueous solutions. WP/Ti electrodes produced current densities of -10 mA cm(-2) and -20 mA cm(-2) at overpotentials of only -120 mV and(More)
Transition metal phosphides recently have been identified as promising Earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Here, we present a general and scalable strategy for the synthesis of transition metal phosphide electrodes based on the reaction of commercially available metal foils (Fe,(More)
CuCo2S4 is an important mixed-metal spinel-type sulfide that is typically synthesized using high-temperature solid-state reactions, which produce agglomerated particles with low surface areas that are not optimal for applications such as heterogeneous catalysis. Here, we show that highly crystalline and nonagglomerated colloidal CuCo2S4 nanoparticles can be(More)
Three-component colloidal hybrid nanoparticles, which are central to a diverse array of applications, are typically synthesized using successive seeded growth steps, which are additive in nature and driven by surface chemistry considerations and material-specific preferences for nucleation and growth. Here, we describe a new nanoparticle insertion reaction(More)
Ion exchange reactions of colloidal nanocrystals provide access to complex products that are synthetically challenging using traditional hot-injection methods. However, such reactions typically achieve only partial material transformations by employing either cation or anion exchange processes. It is now shown that anion and cation exchange reactions can be(More)
Molybdenum ditelluride, MoTe2 , is emerging as an important transition-metal dichalcogenide (TMD) material because of its favorable properties relative to other TMDs. The 1T ' polymorph of MoTe2 is particularly interesting because it is semimetallic with bands that overlap near the Fermi level, but semiconducting 2H-MoTe2 is more stable and therefore more(More)
The electrocatalytic performance for hydrogen evolution has been evaluated for radial-junction n(+)p-Si microwire (MW) arrays with Pt or cobalt phosphide, CoP, nanoparticulate catalysts in contact with 0.50 M H2SO4(aq). The CoP-coated (2.0 mg cm(-2)) n(+)p-Si MW photocathodes were stable for over 12 h of continuous operation and produced an open-circuit(More)
  • 1