Learn More
Nonrandom mating induces correlations in allelic states within and among loci that can be exploited to understand the genetic structure of natural populations (Wright 1965). For many species, it is of considerable interest to quantify the contribution of two forms of nonrandom mating to patterns of standing genetic variation: inbreeding (mating among(More)
Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic variants within and between populations. For candidate models we numerically compute the expected spectrum using a(More)
Current methods for detecting fluctuating selection require time series data on genotype frequencies. Here, we propose an alternative approach that makes use of DNA polymorphism data from a sample of individuals collected at a single point in time. Our method uses classical diffusion approximations to model temporal fluctuations in the selection(More)
Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely(More)
Asian rice, Oryza sativa is a cultivated, inbreeding species that feeds over half of the world's population. Understanding the genetic basis of diverse physiological, developmental, and morphological traits provides the basis for improving yield, quality and sustainability of rice. Here we show the results of a genome-wide association study based on(More)
As a first step toward understanding how rare variants contribute to risk for complex diseases, we sequenced 15,585 human protein-coding genes to an average median depth of 111× in 2440 individuals of European (n = 1351) and African (n = 1088) ancestry. We identified over 500,000 single-nucleotide variants (SNVs), the majority of which were rare (86% with a(More)
Quantifying the distribution of fitness effects among newly arising mutations in the human genome is key to resolving important debates in medical and evolutionary genetics. Here, we present a method for inferring this distribution using Single Nucleotide Polymorphism (SNP) data from a population with non-stationary demographic history (such as that of(More)
Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection. The extent to which weak negative and positive darwinian selection have driven the molecular evolution of different species(More)
Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the(More)
Quantifying the number of deleterious mutations per diploid human genome is of crucial concern to both evolutionary and medical geneticists. Here we combine genome-wide polymorphism data from PCR-based exon resequencing, comparative genomic data across mammalian species, and protein structure predictions to estimate the number of functionally consequential(More)