Learn More
The reemergence of tuberculosis (TB) from the 1980s to the early 1990s instigated extensive researches on the mechanisms behind the transmission dynamics of TB epidemics. This article provides a detailed review of the work on the dynamics and control of TB. The earliest mathematical models describing the TB dynamics appeared in the 1960s and focused on the(More)
Despite improved control measures, Ebola remains a serious public health risk in African regions where recurrent outbreaks have been observed since the initial epidemic in 1976. Using epidemic modeling and data from two well-documented Ebola outbreaks (Congo 1995 and Uganda 2000), we estimate the number of secondary cases generated by an index case in the(More)
Following primary tuberculosis (TB) infection, only approximately 10% of individuals develop active T.B. Most people are assumed to mount an effective immune response to the initial infection that limits proliferation of the bacilli and leads to long-lasting partial immunity both to further infection and to reactivation of latent bacilli remaining from the(More)
Incomplete treatment of patients with infectious tuberculosis (TB) may not only lead to relapse but also to the development of antibiotic resistant TB-one of the most serious health problems facing society today. In this article, we formulate one-strain and two-strain TB models to determine possible mechanisms that may allow for the survival and spread of(More)
On 16 May 2009, Japan confirmed its first three cases of new influenza A(H1N1) virus infection without a history of overseas travel, and by 1 June, 361 cases, owing to indigenous secondary transmission, have been confirmed. Of these, 287 cases (79.5%) were teenagers (i.e. between 10 and 19 years of age). The reproduction number is estimated at 2.3 (95%(More)
Infection by one strain of influenza type A provides some protection (cross-immunity) against infection by a related strain. It is important to determine how this influences the observed co-circulation of comparatively minor variants of the H1N1 and H3N2 subtypes. To this end, we formulate discrete and continuous time models with two viral strains,(More)
Large scale simulations of the movements of people in a "virtual" city and their analyses are used to generate insights into understanding the dynamic processes that depend on the interactions between people. Models, based on these interactions, can be used in optimizing traffic flow, slowing the spread of infectious diseases, or predicting the change in(More)
In this article we use global and regional data from the SARS epidemic in conjunction with a model of susceptible, exposed, infective, diagnosed, and recovered classes of people ("SEIJR") to extract average properties and rate constants for those populations. The model is fitted to data from the Ontario (Toronto) in Canada, Hong Kong in China and Singapore(More)
Models for sexually transmitted diseases generally assume that the size of the core group is fixed. Publicly available information on disease prevalence may influence the recruitment of new susceptibles into highly sexually active populations. It is assumed that the recruitment rate into the core population is low while disease prevalence is high, core(More)