Carlos Campañá

  • Citations Per Year
Learn More
A method to generate electrostatic potential (ESP) derived atomic charges in crystalline solids from periodic quantum mechanical calculations, termed the REPEAT method, is presented. Conventional ESP fitting procedures developed for molecular systems, in general, will not work for crystalline systems because the electrostatic potential in periodic systems(More)
The spatial distribution of regions that lie above contours of constant height through a self-affine surface is studied as a function of the Hurst exponent H. If the surface represents a landscape, these regions correspond to islands. When the surface represents the height difference for contacting surfaces, the regions correspond to mechanical contacts in(More)
The Green’s function molecular dynamics method, which enables one to study the elastic response of a three-dimensional solid to an external stress field by taking into consideration only the surface atoms, was implemented as an extension to an open source classical molecular dynamics simulation code LAMMPS. This was done in the style of fixes. The first(More)
The Transition Rapidly exploring Random Eigenvector Assisted Tree (TRREAT) algorithm is introduced to perform searches along low curvature pathways on a potential energy surface (PES). The method combines local curvature information about the PES with an iterative Rapidly exploring Random Tree algorithm (LaValle, Computer Science Department, Iowa State(More)
Molecular dynamics simulations were used to model grain boundary sliding in stressed Fe-Ni bicrystals exposed to low energy neutron irradiation. We studied how sliding stress thresholds and sliding mechanisms changed with variations in the Ni boundary morphology and boundary geometry. Simulations corresponding to ordered boundary Ni distributions and(More)
We use Green's function molecular dynamics to evaluate the effectiveness of asperity models when describing the contact mechanics of elastic solids with self-affine surfaces. Surfaces are created with the help of a Fourier filtering algorithm, and the interactions between the solids are modeled via hard-wall potentials. We illustrate how the real area of(More)
  • 1