Learn More
Since emotions are expressed through a combination of verbal and non-verbal channels, a joint analysis of speech and gestures is required to understand expressive human communication. To facilitate such investigations, this paper describes a new corpus named the “interactive emotional dyadic motion capture database” (IEMOCAP), collected by the Speech(More)
The interaction between human beings and computers will be more natural if computers are able to perceive and respond to human non-verbal communication such as emotions. Although several approaches have been proposed to recognize human emotions based on facial expressions or speech, relatively limited work has been done to fuse these two, and other,(More)
Emotion state tracking is an important aspect of humancomputer and human-robot interaction. It is important to design task specific emotion recognition systems for real-world applications. In this work, we propose a hierarchical structure loosely motivated by Appraisal Theory for emotion recognition. The levels in the hierarchical structure are carefully(More)
During expressive speech, the voice is enriched to convey not only the intended semantic message but also the emotional state of the speaker. The pitch contour is one of the important properties of speech that is affected by this emotional modulation. Although pitch features have been commonly used to recognize emotions, it is not clear what aspects of the(More)
Recognizing human emotions/attitudes from speech cues has gained increased attention recently. Most previous work has focused primarily on suprasegmental prosodic features calculated at the utterance level for modeling against details at the segmental phoneme level. Based on the hypothesis that different emotions have varying effects on the properties of(More)
Work on voice sciences over recent decades has led to a proliferation of acoustic parameters that are used quite selectively and are not always extracted in a similar fashion. With many independent teams working in different research areas, shared standards become an essential safeguard to ensure compliance with state-of-the-art methods allowing appropriate(More)
The verbal and nonverbal channels of human communication are internally and intricately connected. As a result, gestures and speech present high levels of correlation and coordination. This relationship is greatly affected by the linguistic and emotional content of the message. The present paper investigates the influence of articulation and emotions on the(More)
Since emotional speech can be regarded as a variation on neutral (non-emotional) speech, it is expected that a robust neutral speech model can be useful in contrasting different emotions expressed in speech. This study explores this idea by creating acoustic models trained with spectral features, using the emotionally-neutral TIMIT corpus. The performance(More)
An appealing scheme to characterize expressive behaviors is the use of emotional dimensions such as activation (calm versus active) and valence (negative versus positive). These descriptors offer many advantages to describe the wide spectrum of emotions. Due to the continuous nature of fast-changing expressive vocal and gestural behaviors, it is desirable(More)
Rigid head motion is a gesture that conveys important nonverbal information in human communication, and hence it needs to be appropriately modeled and included in realistic facial animations to effectively mimic human behaviors. In this paper, head motion sequences in expressive facial animations are analyzed in terms of their naturalness and emotional(More)