Carlos Augusto Gartner

Learn More
Proteasomes, the primary mediators of ubiquitin-protein conjugate degradation, are regulated through complex and poorly understood mechanisms. Here we show that USP14, a proteasome-associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin-protein conjugates both in vitro and in cells. A catalytically inactive variant of USP14 has reduced(More)
Loss of myofibrillar proteins is a hallmark of atrophying muscle. Expression of muscle RING-finger 1 (MuRF1), a ubiquitin ligase, is markedly induced during atrophy, and MuRF1 deletion attenuates muscle wasting. We generated mice expressing a Ring-deletion mutant MuRF1, which binds but cannot ubiquitylate substrates. Mass spectrometry of the bound proteins(More)
Insulin stimulates the translocation of intracellular GLUT4 to the plasma membrane where it functions in adipose and muscle tissue to clear glucose from circulation. The pathway and regulation of GLUT4 trafficking are complicated and incompletely understood and are likely to be contingent upon the various proteins other than GLUT4 that comprise and interact(More)
S-(1,1,2,2-Tetrafluoroethyl)-L-cysteine (TFEC, the cysteine S-conjugate of tetrafluoroethylene) is an example of a nephrotoxic, halogenated cysteine S-conjugate. Toxicity results in part from the cysteine S-conjugate beta-lyase(s)-catalyzed conversion of TFEC to a thioacylating fragment with the associated production of pyruvate and ammonia. In the present(More)
N-acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen (APAP), can arylate and oxidize protein and nonprotein thiols in the pathogenesis of APAP-induced hepatotoxicity. We report the first direct evidence for the formation of a labile ipso adduct between glutathione (GSH) and NAPQI using a combination of techniques including liquid(More)
While photoaffinity ligands (PALs) have been widely used to probe the structures of many receptors and transporters, their effective use in the study of membrane-bound cytochrome P450s is less established. Here, lapachenole has been used as an effective photoaffinity ligand of human P450 3A4, and mass spectrometry data demonstrating the efficient and(More)
A method for the quantification of subnanomolar levels of in vitro metabolites of caffeine by an isotope dilution gas chromatographic-mass spectrometric (GC-MS) assay has been developed and applied. Trideuteromethylated analogs of each primary metabolite were synthesized and added after incubations of caffeine with human liver microsomes high in cytochrome(More)
The relative quantification of protein expression levels in different cell samples through the utilization of stable isotope dilution has become a standard method in the field of proteomics. We describe here the development of a new reductively cleavable reagent which facilitates the relative quantification of thousands of proteins from only tens of(More)
Cytochrome P450 3A4 is a drug-metabolizing enzyme of extraordinarily broad substrate specificity. This quality imparts upon the enzyme special importance in understanding its determinants of activity and substrate recognition. Limited successes in P450 3A4 active-site structure studies have been achieved by use of mechanism-based inactivators and(More)
Activity-based protein profiling has emerged as a valuable technology for labeling, enriching, and assessing protein activities from complex mixtures. This is primarily accomplished via a two-step identification and quantification process. Here we show a highly quantitative and streamlined method, termed catch-and-release activity profiling of enzymes(More)