Carlos Andrés Peña-Reyes

Learn More
The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies-fuzzy systems and evolutionary algorithms-so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two(More)
Coevolutionary algorithms have received increased attention in the past few years within the domain of evolutionary computation. In this paper, we combine the search power of coevolutionary computation with the expressive power of fuzzy systems, introducing a novel algorithm, Fuzzy CoCo: Fuzzy Cooperative Coevolution . We demonstrate the efficacy of Fuzzy(More)
In this paper we present a platform for evolving spiking neural networks on FPGAs. Embedded intelligent applications require both high performance, so as to exhibit real-time behavior, and flexibility, to cope with the adaptivity requirements. While hardware solutions offer performance, and software solutions offer flexibility, reconfigurable computing(More)
This thesis presents Fuzzy CoCo, a novel approach for system design, conducive to explaining human decisions. Based on fuzzy logic and coevolutionary computation, Fuzzy CoCo is a methodology for constructing systems able to accurately predict the outcome of a human decision-making process, while providing an understandable explanation of the underlying(More)
This paper presents an architectural proposal for a hardware-based interval type-2 fuzzy inference system. First, it presents a computational model which considers parallel inference processing and type reduction based on computing inner and outer bound sets. Taking into account this model, we conceived a hardware architecture with several pipeline stages(More)
The term evolutionary computation encompasses a host of methodologies inspired by natural evolution that are used to solve hard problems. This paper provides an overview of evolutionary computation as applied to problems in the medical domains. We begin by outlining the basic workings of six types of evolutionary algorithms: genetic algorithms, genetic(More)
There is no systematic way to define the optimal topology of an artificial neural network for a given task. Heuristic methods, such as genetic algorithms, have been widely used to determine the number of neurons and the connectivity required for specific applications. However, artificial evolution uses to be highly time-consuming, making it unsuitable for(More)
In this paper we present a functional model of spiking neuron intended for hardware implementation. The model allows the design of speedand/or area-optimized architectures. Some features of biological spiking neurons are abstracted, while preserving the functionality of the network, in order to define an architecture easily implementable in hardware, mainly(More)