Carlos Alberto Ávila-Orta

  • Citations Per Year
Learn More
Scanning electron micrographs of a solvent-extracted sheared polyethylene (PE) blend revealed, for the first time, an unexpected shish-kebab structure with multiple shish. The blend contained 2 wt % of crystallizing ultrahigh molecular weight polyethylene (UHMWPE) and 98 wt % of noncrystallizing PE matrix. The formation of multiple shish was attributed to(More)
The isothermal crystallization of poly(ethylene terephthalate) (PET) homopolymers with different molecular weight was studied in a wide temperature range (140–230 °C) using different experimental techniques. Three different morphological regions, labeled r1, r2 and r3, were distinguished as a function of crystallization temperature (Tc). In r1 (low Tc)(More)
Isotactic polypropylenes (iPP) with different melt flow indexes (MFI) were used to fabricate nanocomposites (NCs) with 10 wt % loadings of multi-wall carbon nanotubes (MWCNTs) using ultrasound-assisted extrusion methods to determine their effect on the morphology, melt flow, and electrical properties of the NCs. Three different types of iPPs were used with(More)
Unique properties of carbon nanotubes (CNTs) and Nylon-6 were combined to obtain nanocomposites through in situ polymerization. For this purpose, plasma-polymerized CNTs (CNTM) and raw CNTs were added to in situ polymerization of e-caprolactam and 6-aminocapropic acid to obtain nanocomposites with 2 and 4% wt/wt of nanotubes. The morphology, phase(More)
Semicrystalline polymer/layered silicate nanocomposites were prepared by solution blending of a low molecular weight poly(ethylene oxide) (PEO) with an organically modified montmorillonite, Cloisite 10A (C10A). The intercalation morphology was studied by temperature-dependent synchrotron wide-angle X-ray diffraction (WAXD). Unlike PEO homopolymers,(More)
Metamaterial behavior of polymer nanocomposites (NCs) based on isotactic polypropylene (iPP) and multi-walled carbon nanotubes (MWCNTs) was investigated based on the observation of a negative dielectric constant (ε'). It is demonstrated that as the dielectric constant switches from negative to positive, the plasma frequency (ωp) depends strongly on the(More)
  • 1