Learn More
In this paper, we focus on the problem of speckle removal by means of anisotropic diffusion and, specifically, on the importance of the correct estimation of the statistics involved. First, we derive an anisotropic diffusion filter that does not depend on a linear approximation of the speckle model assumed, which is the case of a previously reported filter,(More)
A new method for noise filtering in images that follow a Rician model-with particular attention to magnetic resonance imaging-is proposed. To that end, we have derived a (novel) closed-form solution of the linear minimum mean square error (LMMSE) estimator for this distribution. Additionally, a set of methods that automatically estimate the noise power are(More)
This paper deals with the development of a new fiber tracking algorithm to be used with high resolution diffusion tensor fields acquired via magnetic resonance imaging. The tracking of white matter fibers in the human brain will improve the diagnosis and treatment of many neuronal diseases. The algorithm here proposed is based on a mixture of geometrical(More)
In this paper we analyze a result previously published about a comparison between two statistical tests used for evaluation of boundary detection algorithms on medical images. We conclude that the statement made by Chalana and Kim (1997) about the performance of the percentage test has a weak theoretical foundation, and according to our results, is not(More)
Noise estimation is a challenging task in magnetic resonance imaging (MRI), with applications in quality assessment, filtering or diffusion tensor estimation. Main noise estimators based on the Rician model are revisited and classified in this article, and new useful methods are proposed. Additionally, all the surveyed estimators are extended to the(More)
A new and complementary method to assess image quality is presented. It is based on the comparison of the local variance distribution of two images. This new quality index is better suited to assess the non-stationarity of images, therefore it explicitly focuses on the image structure. We show that this new index outperforms other methods for the assessment(More)
This paper 1 presents an algorithm for automatically detecting bone contours from hand radiographs using active contours. Prior knowledge is first used to locate initial contours for the snakes inside each bone of interest. Next, an adaptive snake algorithm is applied so that parameters are properly adjusted for each bone specifically. We introduce a novel(More)
In this paper, a novel method for the boundary detection of human kidneys from three dimensional (3D) ultrasound (US) is proposed. The inherent difficulty of interpretation of such images, even by a trained expert, makes the problem unsuitable for classical methods. The method here proposed finds the kidney contours in each slice. It is a probabilistic(More)
New medical imaging modalities offering multi-valued data, such as phase contrast MRA and diffusion tensor MRI, require general representations for the development of automated algorithms. In this paper we propose a unified framework for the registration of medical volumetric multi-valued data using local matching. The paper extends the usual concept of(More)
Ultrasound (US) imaging exhibits considerable difficulties for medical visual inspection and for development of automatic analysis methods due to speckle, which negatively affects the perception of tissue boundaries and the performance of automatic segmentation methods. With the aim of alleviating the effect of speckle, many filtering techniques are usually(More)