Carlos A Fontes-Ribeiro

Learn More
It is well known that methamphetamine (METH) is neurotoxic and recent studies have suggested the involvement of neuroinflammatory processes in brain dysfunction induced by misuse of this drug. Indeed, glial cells seem to be activated in response to METH, but its effects on microglial cells are not fully understood. Moreover, it has been shown that(More)
Methamphetamine (METH) is a psychostimulant drug that causes irreversible brain damage leading to several neurological and psychiatric abnormalities, including cognitive deficits. Neuropeptide Y (NPY) is abundant in the mammalian central nervous system (CNS) and has several important functions, being involved in learning and memory processing. It has been(More)
Amphetamines exert their persistent addictive effects by activating brain's reward pathways, perhaps through the release of dopamine in the nucleus accumbens (and/or in other places). On the other hand, there is a relationship between dopamine and all behavioural aspects that involve motor activity and it has been demonstrated that exercise leads to an(More)
This study aimed to evaluate the efficacy of sitagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor, in preventing the deleterious effects of diabetes on the kidney in an animal model of type 2 diabetes mellitus; the Zucker diabetic fatty (ZDF) rat: 20-week-old rats were treated with sitagliptin (10 mg/kg bw/day) during 6 weeks. Glycaemia and blood HbA1c(More)
Methamphetamine (METH) is a psychostimulant drug of abuse that causes severe brain damage. However, the mechanisms responsible for these effects are poorly understood, particularly regarding the impact of METH on hippocampal neurogenesis. Moreover, neuropeptide Y (NPY) is known to be neuroprotective under several pathological conditions. Here, we(More)
Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor with a high mortality rate. Doxorubicin (DOX) and methotrexate (MTX) showed to be effective against a wide range of tumors, but its use in GBM treatment is limited in part due to the inability to cross the blood–brain barrier (BBB). Based on recent studies demonstrating that(More)
PURPOSE Inflammation associated with blood-retinal barrier (BRB) breakdown is a common feature of several retinal diseases. Therefore, the development of novel nonsteroidal anti-inflammatory approaches may provide important therapeutic options. Previous studies demonstrated that inhibition of dipeptidyl peptidase-IV, the enzyme responsible for the(More)
Methylphenidate (MPH) is an amphetamine-like stimulant commonly prescribed for attention deficit hyperactivity disorder. Despite its widespread use, the cellular/molecular effects of MPH remain elusive. Here, we report a novel direct role of MPH on the regulation of macromolecular flux through human brain endothelial cells (ECs). MPH significantly increased(More)
Convincing evidence indicates that advanced glycation end-products and danger-associated protein S100B play a role in Parkinson's disease (PD). These agents operate through the receptor for advanced glycation end-products (RAGE), which displays distinct isoforms playing protective/deleterious effects. However, the nature of RAGE variants has been overlooked(More)
Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG). Still, little is known regarding its effect on DG stem cell properties. Herein, we(More)
  • 1