Carlo Masone

Learn More
In this paper we address the problem of controlling the motion of a group of UAVs bound to keep a formation defined in terms of only relative angles (i.e., a bearing-formation). This problem can naturally arise within the context of several multi-robot applications such as, e.g., exploration, coverage, and surveillance. First, we introduce and thoroughly(More)
The polymerase chain reaction-based differential display method (DDRT-PCR) was used to identify mRNAs differentially expressed during the maturation of human CD34+ progenitor cells stimulated to differentiate in vitro towards granulomonocytic or erythroid lineages with a mixture of hemopoietins (kit ligand + interleukin 3 + GM-CSF in the absence or presence(More)
This paper considers the problem of realizing a 6-DOF closed-loop motion simulator by exploiting an anthropomorphic serial manipulator as motion platform. Contrary to standard Stewart platforms, an industrial anthropomorphic manipulator offers a considerably larger motion envelope and higher dexterity that let envisage it as a viable and superior(More)
This paper, divided in two Parts, considers the problem of realizing a 6-DOF closed-loop motion simulator by exploiting an anthropomorphic serial manipulator as motion platform. After having proposed a suitable inverse kinematics scheme in Part I [1], we address here the other key issue, i.e., devising a motion cueing algorithm tailored to the specific(More)
This work extends the framework of bilateral shared control of mobile robots with the aim of increasing the robot autonomy and decreasing the operator commitment. We consider persistent autonomous behaviors where a cyclic motion must be executed by the robot. The human operator is in charge of modifying online some geometric properties of the desired path.(More)
We present a decentralized system for the bilateral teleoperation of groups of UAVs which only relies on relative bearing measurements, i.e., without the need of distance information or global localization. The properties of a 3D bearing-formation are analyzed, and a minimal set of bearings needed for its definition is provided. We also design a novel(More)
A new framework for semi-autonomous path planning for mobile robots that extends the classical paradigm of bilateral shared control is presented. The path is represented as a B-spline and the human operator can modify its shape by controlling the motion of a finite number of control points. An autonomous algorithm corrects in real time the human directives(More)
I. ABSTRACT The advances made in the last two decades have allowed robotic platforms, and in particular mobile robots, to successfully address a large variety of tasks, albeit mainly repetitive and simple ones. However, real-world applications typically involve complex decision making processes and non structured environments thus requiring a level of(More)
This paper describes the mechanical and control design of the new 7-DOF CyberMotion Simulator, a redundant industrial manipulator arm consisting of a standard 6-DOF anthropomorphic manipulator plus an actuated cabin attached to the end-effector. Contrarily to Stewart platforms, an industrial manipulator offers several advantages when used as motion(More)
This paper introduces the CableRobot simulator, which was developed at the Max Planck Institute for Biological Cybernetics in cooperation with the Fraunhofer Institute for Manufacturing Engineering and Automation IPA. The simulator is a completely novel approach to the design of motion simulation platforms in so far as it uses cables and winches for(More)