Learn More
In program debugging, finding a failing run is only the first step; what about correcting the fault? Can we automate the second task as well as the first? The AutoFix-E tool automatically generates and validates fixes for software faults. The key insights behind AutoFix-E are to rely on contracts present in the software to ensure that the proposed fixes are(More)
Considerable progress has been made towards automatic support for one of the principal techniques available to enhance program reliability: equipping programs with extensive contracts. The results of current contract inference tools are still often unsatisfactory in practice, especially for programmers who already apply some kind of basic Design by Contract(More)
The increasing relevance of areas such as real-time and embedded systems, pervasive computing, hybrid systems control, and biological and social systems modeling is bringing a growing attention to the temporal aspects of computing, not only in the computer science domain, but also in more traditional fields of engineering. This article surveys various(More)
To Yuri Gurevich in joyful celebration of his 70th birthday, and with thanks for his many contributions to computer science, including his original leadership of the group on whose tools the present work crucially relies. Abstract. One of the obstacles in automatic program proving is to obtain suitable loop invariants. The invariant of a loop is a weakened(More)
In globally distributed software development, does it matter being agile rather than structured? To answer this question, this paper presents an extensive case study that compares agile (Scrum, XP, etc.) vs. structured (RUP, waterfall) processes to determine if the choice of process impacts aspects such as the overall success and economic savings of(More)
Initial research in automated program fixing has generally limited itself to specific areas, such as data structure classes with carefully designed interfaces, and relied on simple approaches. To provide high-quality fix suggestions in a broad area of applicability, the present work relies on the presence of contracts in the code, and on the availability of(More)
With formal techniques becoming more and more powerful, the next big challenge is making software verification practical and usable. The Eve verification environment contributes to this goal by seamlessly integrating a static prover and an automatic testing tool into a development environment. The paper discusses the general principles behind the(More)
Experience with lightweight formal methods suggests that programmers are willing to write specification if it brings tangible benefits to their usual development activities. This paper considers stronger specifications and studies whether they can be deployed as an incremental practice that brings additional benefits without being unacceptably expensive. We(More)
Static program verifiers such as Spec#, Dafny, jStar, and VeriFast define the state of the art in automated functional verification techniques. The next open challenges are to make verification tools usable even by programmers not fluent in formal techniques. This paper presents AutoProof, a verification tool that translates Eiffel programs to Boogie and(More)