Learn More
In program debugging, finding a failing run is only the first step; what about correcting the fault? Can we automate the second task as well as the first? The AutoFix-E tool automatically generates and validates fixes for software faults. The key insights behind AutoFix-E are to rely on contracts present in the software to ensure that the proposed fixes are(More)
In this paper we argue that the modeling activity in the development of software-intensive systems should formalize as much as possible of the environment in which the application being developed operates. We also show that a rich formal model of the environment helps developers clearly state requirements that might typically be considered intrinsically(More)
Sometimes debates on programming languages are more religious than scientific. Questions about which language is more succinct or efficient, or makes developers more productive are discussed with fervor, and their answers are too often based on anecdotes and unsubstantiated beliefs. In this study, we use the largely untapped research potential of Rosetta(More)
Auto-active verifiers provide a level of automation intermediate between fully automatic and interactive: users supply code with annotations as input while benefiting from a high level of automation in the back-end. This paper presents AutoProof, a state-of-the-art auto-active verifier for object-oriented sequential programs with complex functional(More)
This paper presents a novel approach to the design of self-adaptive service-oriented applications based on a new model called service tiles. The approach allows designers to develop a service-oriented system by building an assembly of component services that accomplishes the given goal. The assembly is computed automatically starting from the specification(More)
We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE(More)
Formal verification tools are often developed by experts for experts; as a result, their usability by programmers with little formal methods experience may be severely limited. In this paper, we discuss this general phenomenon with reference to AutoProof: a tool that can verify the full functional correctness of object-oriented software. In particular, we(More)
Considerable progress has been made towards automatic support for one of the principal techniques available to enhance program reliability: equipping programs with extensive contracts. The results of current contract inference tools are still often unsatisfactory in practice, especially for programmers who already apply some kind of basic Design by Contract(More)